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General problem of two-phase dispersed flows

dV
E = F(X, ‘/Tj u, t)
Dispersed phase:
Particle/hydro-turbulence interactions very small spherical particles
Ilgnore: .
Particle/particle interactions Fluid phase:
Turbulence modification by particles multi-scale flow

Particle deformation, surface tension effects

u=u(x,t)



A way for liquid droplet size evolution

lheterog. nucl. | condensation | coalescence ]
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Field description:
Time-space evolution of local droplet distribution over size a: n(a,X,t)

advection condensation

Oun(a X,1) + V- (v, X, ) = ~ Qs ) - 82D

(K@ ) n@)n(@) o,
—l—/da{ 2({1”/&)2 K(a',a)n(a') n(a)

a

coalescence

» very complex due to interplay of inertia, gravity, microphysics, turbulence (Re, &)
» need for better modeling/understanding of various regimes




Collision rate: classical approaches

~ Product of the local concentrations n(a) and n(a’) of drops of
size a and a’, multiplied the target area, and the relative velocity.

- Saffman & Turner (1956) estimate homogeneous
distribution of droplets in a local mean shear .

K(a,a')n(a) n(a) ~ n(@)n(@)(a +a)* by (a+a)]

| Valid for very small size: a ~ 5 um

Il Relevant for energetic turbulence € > 0.1 m?/s3

« Eventually gravity dominates the dynamics
Ky(a,a")n(a)n(a’) ~ E(a,a’) n(a) n(a’)(a + a')*|Vy(a) — Vy(a')

| Relevant for big particles and polidisperse



Turbulence induced collisions for

mohnodisperse sus

Ghost collision approach (Sundaram & Collins 1997)

K(a,d )n(a)n(a') ~ n?(a)(2a)® g(2a) / AV P(AV|(a+a)) dAV
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PREFERENTIAL CONCENTRATION VELOCITY DISTRIBUTION

Focus on : Reynolds and Stokes dependence



Point-droplet Model

Spherical particles: Gatignol (1983), Maxey & Riley (1983)
* radius a much smaller than the Kolmogorov scale n

* dilute solution: no collisions IV, — ula
- they have a very small Reynolds number Re, = —* <1
- very heavy particles p,>> p; g

Spherical particles in an unsteady Stokes flow

dVg,
ma~* = 6ma(ps v)[u = Vo] + (ma — my)g
2 a%pq
particle Stokes time Ta = =
9 prv
Advantages Shortcomings
* Turbulent motion accurately solved « Comput. demanding

e Inertial small-scale effects are described « Moderate turbulence
 Description is valid up to ~ big particles » Finite-size effect missing



3D Direct Numerical Simulations
Oou+u-Vu=—-VP+vViu+ F

dV u-V T
@ Hear~
Tp ’rn

-
Gt = -2
» Homogeneous & isotropic flow Ty

» Passive heavy particles (1-way coupling)

N3 [ Re, ] 2562 [Re, = 105] 5123 [Re, =185] 20483 [Re, = 400]
St [range] [0.16 - 3.3] [0.16 - 3.3] [0.16 - 70]
Slow dumps 107, 2Million 7.5Million 100 Million

Fast dumps 0.1, 250,000 500,000 200,000

L/n 0.25m /1mm 0.5m/ 1mm 2m / 1mm
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Dissipative range clustering

3D Particle Radial distribution function

‘

g(?") ~ 1 Poissonian
| C1 . . .
g(r) ~ (ﬂ) 1 >0 Non homogeneous distribution
?
\
Probability to find 2 particles at a distance smaller thanr : P (R,,<r) = P,(r)
i —08——————— R
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D, is the correlation dimension 2 s
(Grassberger 1983 ; N s 0ss|]
Hentschel & Procaccia,1983) igtj?f;
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Preferential concentration
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Absent or weak Re effect
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What about the fractal nature of the dynamic set where particles cluster?



Dissipative range Mass distribution

Generalise the idea: .
Estimate the probability to measure q particles . .
randomly chosen, lying within a distance r. o
@
By Large deviation theory: @ . o |*
([
: (g—1)D
Py(r; St) ~ 7 -
% Re,=185
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At higher Reynolds, no differences are detectable

« Picture similar to random flows (Bec, Gawedzki, Horvai 2004)
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Heavy particles velocity behaviour

A 1D cartoon

High St

How are the velocity differences at changing Stokes and separation the scale r?

Are these singular events statistically relevant?

How do they appear & which is their statistical weight?
Do they exist at all Stokes numbers St>0 ?

Do they have a typical amplitude or not?



Low & high inertia limits

limit St=0 tracers limit, particles follow fluid streamlines

limit St = oo ballistic limit, a gas of free particles unaffected by the flow

dV. u—V ; ou;
dt Tp Ox;
Writing the evolution equation for particle velocity gradients Sij = Vi
0x ;
ds;; 0ij — Sij !
dt Tp -

--> particle velocity gradients can blow U|lo,
articularly if inertia is large
P g 9 sijl > —
Tp e e Tt show the Skt of the vertn . th s B
Particles might come close to each other with very different velocities,

sling effect (Falkovich et al. Nature 2002
see also Wilkinson & Mehlig 2005)




<IAV(r)I>

Stationary distribution of

heavy particles velocities

Take all pairs of particles at distance r and measure
@ v their average longitudinal velocity difference

Sp(r) = (I(V(x+71) = V(x)) - T]F)

Ty = T.
P T
l

r*(St) ~ nSt3/?

1 f

r < 1*(5t) Inertia dominates

4 R R r > r*(St) Inertia negligible
\



Scale by scale behaviour
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First focus on small scale statisticsr < h

Sy (7, St) = (\ATV” P} o rép(St)



First moment of relative velocities

[< AV(’T') >~ T, 51 =1 u(x,t)

Zero inertia limit \ﬂ
<|AV(T)|||> ~ 8t S f V(x,)
< AV(r) >~cost; & =0
Large inertia limit
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Dissipative range statistics S, (1, St) = (|A V) [P) o 7E#(58)

Fluid limit

| St

v Ballistic limit
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Data indicate:
- weak Reynolds dependence;
- there is a saturation exponent, i.e caustics have a typical amplitude:

£ o log(T/St),  St<7T
{
| £ 0, St > 7

- Amplitude can be large for small Stokes, but caustics are rare
— P(r) «<r

3_509
« The amplitude becomes small for large St
(particle velocities decreasewith St), but caustics fill the space



x{t)/mn
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How do caustics appear and do they relate
to particle spatial properties?

We need to measure the steady-state joint probability
of particles separation & particle relative velocity

p(Ar, A V)



Suggestion from 1D Model

(see also Wilkinson & Mehlig 2005

It has been suggested that Derevyanko et al. 2007)
r P r 3—Do (St)
—A_ /St
Sp(r, St) = ((A,,.V“)p) ~ Bp(St)| =) +e »/ — t
Ui n
Smooth term, caustics are activated
with O(1) prefactor as soon as St > 0.
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Statistical relation seems to work for St>1, while it fails for small Stokes.
Reynolds effects are weak



Rms particle velocity
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A cartoon of ghost collisions in

a monodisperse,dilute solution

Estimate the probability to find two equal droplets at distance 2a, with
opposite velocities ( Stokes time t,<< T,

N(a,a’') = 2m(a + a')*n(a)n(a’) g(a + a’) / AV P(AV|(a + a'))dAV

N(a,a) ~ n*(a) (2a)" g(2a) (|AV (2a)])

Density ratio ps / py=1 0°

20 - . .
Saffman-Turner
Pref. Concentration —e—
Pref. Concentration+Caustics L

Ghost Collision-rate/(Collision-rate ST)

Stokes number St



> Preferential concentration
is relevant at small Stokes numbers St < 1, with a maximum
around St=0.7 which seems independent of the Reynolds number.

> Relative velocity statistics is very intermittent
“quasi-singularities” in the velocity stat. become more and more relevant
as the Stokes number increases.
For large St, relative velocity at very small scales is ~ O(1).
Effective compressibiltity of particle velocity increases with inertia.
“Caustics” can be understood as velocity jumps over nearby points of
typical amplitude. In phase-space, they are associate with the folding of
the manifold where particles velocities distribute.
For St>1, velocity jumps and fractal preferential concentration of particle
are related. Scaling exponents independent of Reynolds number.

> Relevance for collisions & for particle separations
Pref. Concentration and caustics matter also for the way particles separate
and explore different turbulent regions.



Conclusions

We have discussed some properties of (a minimal model of)
inertial particles statistics in homogeneous and isotropic turbulence.
Even in this simple set-up, many questions are open:

- role of flow structures in small-scale clustering
* nature of relative velocity singular behaviour:
caustics? complex folding in phase space?
* how these effects combine into real collisions?
- is there any Reynolds dependence on caustics activation ?

The present knowledge benefits from continuous exchange of
experimental, theoretical and numerical results.

Applications to real phenomena is still a challenge.

Intermittency in the velocity distribution of heavy particles in turbulence
Journ. Fluid Mech. 646, 527 (2010).

Turbulent pair dispersion of inertial particles Journ. Fluid Mech. 645, 497 (2010).






