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We designate the passive scalar field as θ.
It can represent both, temperature varia-
tions or concentration of pollutants. The
passive scalar evolution in an external flow
is described by the equation

∂tθ + v∇θ = κ∇2θ ,

where v is the flow velocity and κ is the
diffusion (thermodiffusion) coefficient. The
coefficient is assumed to be small, κ� ν.



In bulk the mixing time is estimated as
λ−1 where λ is the Lyapunov exponent,
irrespective to the κ value. However, the
mixing time near walls is sensitive to the
κ value, it can be estimated as

√
ν/κ λ−1.

Besides, the velocity correlation time is
estimated as λ−1 even near the wall. Thus,
at investigating the passive scalar dynam-
ics near the wall the velocity can be treat-
ed as short correlated in time.



If the velocity is short correlated then

closed equations can be derived for the

passive scalar correlation functions

Fn(t, r1, . . . , rn) = 〈θ(t, r1) . . . θ(t, rn)〉 ,

obtained by averaging over times larg-

er than the velocity correlation time. Let

us stress that the situation is strongly

anisotropic.



One derives the following equations

∂tFn = κ
n∑

m=1
∇2
mFn

+
n∑

m,k=1

∑
αβ
∂mα

[
Dαβ(rm, rk)∂kβFn

]
,

where the object D is expressed via the

pair velocity correlation function as

Dαβ(r1, r2) =
∫ ∞
0
dt 〈vα(t, r1)vβ(0, r2)〉 .



A z-dependence of the eddy diffusion ten-

sor components can be found directly

from the proportionality laws vx, vy ∝ z

and vz ∝ z2. Say,

Dzz(x, y, z1;x, y, z2) = µz2
1z

2
2 ,

where µ is a constant characterizing strength

of the velocity fluctuations in the periph-

eral region.



The equation for the first moment of θ
is

∂t〈θ〉 = ∂z
[
µz4∂z〈θ〉

]
+ κ∂2

z 〈θ〉 ,

Comparing two terms in RHS, one finds
a characteristic diffusion length

rbl = (κ/µ)1/4.

The quantity determines the thickness
of the diffusion boundary layer.



We are interested mainly in the passive

scalar transport through the region z �
rbl, where the passive scalar is carrying

from the diffusive boundary layer to bulk.

There we arrive at the proportionality law

〈θ〉 ∝ z−3 ,

that gives the decaying rate of the av-

erage θ as z grows.



We introduce scaling exponents for the

high passive scalar moments as well

〈θn〉 ∝ z−ηn,

at z � rbl. Would the molecular diffusion

be irrelevant there then ηn = 3. Really,

the diffusion is relevant and values of the

exponents ηn are subject of a special in-

vestigation.
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One can define the passive scalar corre-

lation length l (along the wall), that can

be found by balance of the molecular and

the eddy diffusion along the wall:

l ∼
√
κ/µ z−1.

The quantity is of order of rbl at z ∼ rbl
and diminishes as z grows.



To exclude the effect of the molecular

diffusion, we introduce an integral of the

passive scalar field

Θ(t, z) = A−1
∫
dx dy θ(t, x, y, z) ,

where A is the area of the surface and

z is its separation from the wall. Obvi-

ously 〈Θ〉 ∝ z−3. What about high-order

moments?



Assuming that the passive scalar corre-

lation length is smaller than the velocity

one, we can derive

∂tΦn(t, z1, . . . , zn) = µ
n∑

m,k=1

∂

∂zm

z2
mz

2
k
∂

∂zk
Φn


+2µ

∑
m 6=k

∂

∂zm

(
z2
mzkΦn

)
,

Φn(t, z1, . . . , zn) = 〈Θ(t, z1) . . .Θ(t, zn)〉 .



The equation leads to the following closed

equation for the moments of the integral

passive scalar

∂t〈Θn〉 = µ
[
z4∂2

z + 4nz3∂z + 4n(n− 1)z2
]
〈Θn〉 .

The equation leads to the scaling

〈Θn〉 ∝ z−ζn, ζn = 2n−1/2+
√

2n+ 1/4 .



A natural conjecture that enables one to

relate the moments of θ and those of Θ

is in using the correlation length l as a

recalculation factor:

〈Θn〉 ∼
l(d−1)(n−1)

An−1
〈θn〉,

ηn = ζn − (n− 1)(d− 1).

Here d is dimensionality of space.



We conducted Lagrangian simulations where
dynamics of a large number of particles
subjected to flow advection and Langevin
forces (producing diffusion) is examined.
The set of the particles is used instead
of the passive scalar field θ, that can be
treated as density of the particles. A big
advantage of the approach is its applica-
bility to a number of space dimensions
d.



In our scheme a particle trajectory %(t)

obeys the equation

∂t% = v(t, %) + χ(t),

where the first term represents the par-

ticle advection and the second term rep-

resents the Langevin force. The variables

χ are independent for different particles

whereas the velocity is the same.
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To establish principal qualitative features

of the process, we perform mainly 2d sim-

ulations. The setup is periodic in x and

the velocity in majority of runs was

vx = z

ξ1 cos
2πx

L
+ ξ2 sin

2πx

L

 L
π
,

vz = z2
ξ1 sin

2πx

L
− ξ2 cos

2πx

L

 ,
where ξ1 and ξ2 are independent random

functions of time. MOVIE
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Numerics reveal deviations of the scal-

ing exponents from the analytical pre-

dictions that are related to an existence

of long correlations along the wall that

can be produced by the multi-fold struc-

tures. That leads to increasing moments

in comparison with the short correlated

case. That is why the scaling exponents

are smaller than the theoretical values.



The deviations naturally diminish as d

grows. However, the effect is a conse-

quence of the artificial fact that the ve-

locity correlation length coincides with

the size system. Let us make the ve-

locity correlation length smaller than L

by using a mixture of the ninth and the

eleventh harmonics. Then we arrive at a

good agreement with numerics.
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