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What is turbulence?

turbulence —

1. Irregular fluctuations occurring in fluid motions. It is characteristic of
turbulence that the fluctuations occur in all three velocity components and are
unpredictable in detail; however, statistically distinct properties of the turbulence
can be identified and profitably analyzed. Turbulence exhibits a broad range of
spatial and temporal scales resulting in efficient mixing of fluid properties.

2. Random and continuously changing air motions that are superposed on the
mean motion of the air.

Glossary of Meteorology, American Meteorological Society

turbulence — In fluid mechanics, a flow condition (see turbulent flow) in which
local speed and pressure change unpredictably as an average flow is
maintained.

atmospheric turbulence — small-scale, irregular air motions characterized by
winds that vary in speed and direction. Turbulence is important because it mixes
and churns the atmosphere and causes water vapour, smoke, and other
substances, as well as energy, to become distributed both vertically and
horizontally.

Britannica Online



What is cloud?

Cloud — A visible aggregate of minute water droplets and/or ice particles in
the atmosphere above the earth’s surface

Glossary of Meteorology, American Meteorological Society
Cloud — any visible mass of water droplets, or ice crystals, or a mixture of
both that is suspended in the air, usually at a considerable height
Britannica Online
What is the typical size of aerosol and cloud particles ?

From a few nanometers: a few molecules condensed
To a few centimeters: hailstones

Measurable parameters from in-situ observations

Particle size...................... MM, mm,cm............ 1um<D<10cm
Number Concentration........ cm> 1t mB 1000cm™><N<1m™
Extinction Coefficient.......... Km™ o, 100km™"'<B<0.01 km

Water Content................... gim®. 10g/m°<W<0.0001g/m°
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PRESSURE, hPa

Cloud formation processes:

Condensation of water vapour into small

droplets

adiabatic expansion (e.g. ascending mé/’/t/ions);

_—

_—

isobaric cooling (radiative, conductive);

Isobaric mixing.
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Examples of
condensation
(formation of
clouds) due to
adiabatic
expansion.



Examples of condensation
(formation of clouds)
due to isobaric cooling.




Examples of condensation
(formation of clouds)

due to isobaric mixing of
two humid unsaturated
airmasses.

Photo Conyright Josef P Willems




Clouds and Turbulence — overview.

Cloud topped boundary layer:
— turbulence in Stratocumulus clouds:
— turbulence in cumulus convection.

Condensation in convective motions.

- a sketch of Koehler's theory;

- collisions and coalescence and a ,bottleneck”
problem.

Experimental evidence of warm rain formation
- drizzle in Stratocumulus;
- warm rain in cumulus clouds.
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Figure 4 Cartoon of well-mixed, nonprecipitating, stratocumulus layer, overlaid
with data from research flight 1 of DYCOMS-IIL. Plotted are the full range, middle
quartile, and mean of 6,, ¢,, and g, from all the data over the target region binned in 30-
m intervals. Heights of cloud base and top are indicated, as are mixed layer values and
values just above the top of the boundary layer of various thermodynamic quantities.
The adiabatic liquid water content is indicated by the dash-dot line.

Stevens, 2005
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Fi1G. C1. (upper six rows) Thumbnails of profile and (last row) time series statistics for the master ensemble.
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Figure 6 Cartoon of trade-wind boundary layer from large-eddy simulation. Heights
of cloud base, level of maximum 6, gradient (inversion height), and maximum cloud
penetration depth are indicated, as are subcloud layer and inversion-level values of
thermodynamic quantities. Cloud water contents are averaged over cloudy points only,
with adiabatic liquid water contents indicated by the dash-dot line. The far right panel
shows cloud fraction, which maximizes near cloud base at just over 5%.

Stevens, 2005
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FIG. 14. Schematic model of a cumulus cloud showing a shedding
thermal that has ascended from cloud base. Continuous entrainment
into the surface of the thermal erodes the core, and the remaining
undiluted core region continues its ascent, leaving a turbulent wake
of mixed air behind it. See text for further discussion.
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FiG, 17. Wind velocity (i) and liquid water content (ii) for three KA penetrations from 1625
to 1633 MDT in the 19 July 1981 cloud: (a) 472 mb, (b) 514 mb and {c¢) 527 mb. The wind
vectors are formed from the vertical wind and the wind along the flight path and are drawn
to scale, o .

Conceptual sketch of cumulus and supporting data.

Blyth et al., 1988
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FiG. 8. {top) Time series of local energy dissipation rate £_ and (bottom) LWC of BBC2
data. The integration time 7 for e, is 1 s a running average over 10 points is included.
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Fig. 9. (top) Time series of local energy dissipation rate &_and (bottom) LWC of INSPECTRO2
data. The integration time 7 for e, is | s; a running average over 10 points is included.

TKE dissipation in small
cumulus clouds

Siebert, Lehmann and Wendisch, 2006.



The following parameters characterize warm turbulent clouds and give
some indication of their variability.

Mean g, can vary from ~10 cm?s™ in stratiform clouds to ~2000 cm?s™ in
cumulonimbus clouds (e.g. Caughey et al., 1982; MacPherson and Isaac,
1977).

RA , varies from ~5000 in stratiform clouds to ~20,000 in strong deep
convective clouds (e.g. Shaw, 2003; Khain et al., 2007);

£ ~ 3cm’s™ and R, ~ 5000 for stratocumulus (Siebert et al., 2010)
e=~30 cm’s” and R ~ 4 x 10* for small cumulus (Siebert et al., 2006).

The maximum LWC are in convective clouds with very strong updrafts and
not exceed 4-5 g m~ ; typically in cumulus 0.1-2 g m™ depending on the
stage of development (Pruppacher and Klett, 1997, §2.1.3).

Most estimates of cloud parameters come from a limited number of
measurements at low resolution; only recently (Siebert et al., 2006; Siebert et
al., 2010) have higher-resolution (~20cm) measurements.

Devenish et al., 2011



Clouds and Turbulence — overview.

Cloud topped boundary layer:
— turbulence in Stratocumulus clouds:
— turbulence in cumulus convection.

Condensation In convective motions.

- a sketch of Koehler's theory;

- collisions and coalescence and a ,bottleneck”
problem.

Experimental evidence of warm rain formation
- drizzle in Stratocumulus;
- warm rain in cumulus clouds.




CCN activation: S=_—~l+--3 )
Kohler theory
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What is rain?

rain — Precipitation in the form of liquid water drops that have diameters greater
than 0.5 mm, or, if widely scattered, the drops may be smaller.

The only other form of liquid precipitation, drizzle, is to be distinguished from
rain in that drizzle drops are generally less than 0.5 mm in diameter, are very
much more numerous, and reduce visibility much more than does light rain.

warm rain — Rain formed from a cloud having temperatures at all levels above
0°C (32°F), and resulting from the droplet coalescence process.

Glossary of Meteorology, American Meteorological Society

rain — Precipitation of liquid water drops with diameters greater than 0.5 mm
(0.02 inch). When the drops are smaller, the precipitation is usually called drizzle.
See also precipitation.

Britannica Online



Aerosol, cloud and rain droplets:

Large cloud droplet
d=100pum

Typical Condensation nucleus
d= 0.2 um

Typical Cloud droplet
d= 20 pum

ypical raindrop
= 2000 pum = 2 mm

From: What about weather modification? By Chuck Doswell, http://www.flame.org/~cdoswell/wxmod/wxmod.html
After. McDonald, J.E., 1958: The physics of cloud modification. Adv. Geophys., 5, 223-303.



CLOUD-PARTICLE FALLSPEEDS
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Rain formation HOW large droplets
responsible for

A collision/coalescence
cascade may appear
N in clouds???
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Figure 3 Illustration of the evolution of a droplet size distribution during the
onset of the collision-coalescence process. Figure adapted from Berry & Reinhardt

(1974) and Lamb (2001}, courtesy of D. Lamb, Penn State University.
After Shaw, 2003.



Concepts:

1. Giant Condensation nuclei

2. Entrainment and secondary activation

3. “Something to do with turbulence”



Clouds and Turbulence — overview.

Cloud topped boundary layer:
— turbulence in Stratocumulus clouds:
— turbulence in cumulus convection.

Condensation in convective motions.

- a sketch of Koehler's theory;

- collisions and coalescence and a ,bottleneck”
problem.

Experimental evidence of warm rain formation
- drizzle in Stratocumulus;
- warm rain in cumulus clouds.




Height of maximum reflectivity varies

Large variability in microphysical structure
on the scale of kilometers.

suggesting time variability in evolution of

drizzle cells.
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Airborne cloud radar observations of
drizzle (red areas) in stratocumulus Stevens et al.. 2003
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FiG 3. (top right) Channel | (0.6 ym) reflectance over the northeast Pacific from
GOES-10 at 0730 LT (1430 UTC) for 11 Jul 2002. (top left) Zoomed image of
reflectance field from boxed region in regional image; overlaid on this image is
a flight segment from RF02 that spans the time of the overpass and from which
radar and lidar data is presented in top left panel. The zoomed image highlights
a tilde-shaped POC boxed in the image. (bottom) Time-height radar reflectivities
filled, with cloud top height as estimated by downward-looking lidar shown by
white line. Regions where lidar detects no cloud are shown by a lidar trace at the
surface. The time for which the satellite image is valid is indicated on the flight
tracks.
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Observations on many scales of a

precipitating small cumulus
(17 January, 13:59 UTC).

A: Satellite image from DMSP recorded 10
minutes before penetration by the Wyoming
King Air.

B: SPol radar image at 3.5 elevation; the
cloud is about 46 km from the radar.

C: Photograph taken from a position marked
with the red dot in B. The cross marks the
approximate location of the aircraft
penetration at 2630 m altitude.

D: Vertical sections of radar reflectivity and of
Doppler velocity from the Wyoming Cloud
Radar and plots of the in situ updraft, liquid
water content and rain rate measurements.
Note that the high rain rates and large drops
are within the updraft.

E: Millimeter sized drops seen at two
different magnifications from imaging probes
on the King

Air. Also shown in F/G are scanning electron
microscope images such as were made from
data collected on NSF/NCAR C130 sub-
cloud circles: 2 ym sea-salt particle collected
by the total aerosol sampler (F); giant sea-
salt particle (20 um scale) collected with the
giant nuclei sampler (G). The location of the
Research Vessel Seward Johnson is marked
with a blue triangle in A.

Rauber et al., 2007



Cloud-scale and small-scale turbulence

Entrainment and mixing:

Cumulus
Stratocumulus
Mechanisms for entrainment in clouds Already partially discussed

Turbulence and cloud microphysics:
motion of cloud droplets

Droplet size distribution

Condensational growth and turbulence

Collisions, coalescence and turbulence
Droplet relative velocity
Droplet clustering (preferential concentration)
Preferential sweeping

The effect of entrainment on the droplet size distribution
Homogeneous and inhomogeneous mixing



Entrainment into cumulus:
Z.80 T T o 3.00 v - . 3.00

{a) 6 min

(&) T min (e} & min

7 |km]
z [km]
z [km]

1.80
0. 1.
x |[km]

¥ fkm] ¥ [km]

FiaG. 19. Isolines of the g, field at ¢ = 6 {a), 7 (b), and 8 min {¢) for the simulation of the large thermal
with K = 1 m? s~ and excitation as described in section 5. Contour interval is 0.3 g kg™'.

FIG. 4. As in Fig. 3 but for the perturbed 3D3M experiment. Note that data for the guarter of the thermal were
used to plot the whole thermal with symmetries as assumed in the experimental setup.

Entrainment as a result of interfacial instabilities: Klaasen, Clark, GrabowskKi
Illustrations from Grabowski and Clark 1991. 1993
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Fig. 1. Liquid water content LWC as a
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Entrainment into stratocumulus:

1500 passive scalar concentration log, ;(®)*
-15
1-2
1-2.5
850 .
500

700 1400 2100 2800
X [m] X [m]

700 1400 2100 2860

Passive scalar concentration x (left, cloud water contours shown by
white lines) and enstrophy (right), at 6 hours of simulations.

Kurowski, Malinowski, Grabowski 2009



Mixing
diagram
showing
buoyancy
(density
temperature)
of mixture of
cloud and
free-
tropospheric
air (upper
lines) and
cloud and EIL
air (lower
lines).

Negative
buoyancy —
below the
blue line.
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Cloud-scale and small-scale turbulence

Entrainment and mixing:
Cumulus
Stratocumulus
Mechanisms for entrainment in clouds

Turbulence and cloud microphysics:
motion of cloud droplets

Droplet size distribution

Condensational growth and turbulence

Collisions, coalescence and turbulence
Droplet relative velocity
Droplet clustering (preferential concentration)
Preferential sweeping

Entrainment and the droplet size distribution

Homogeneous and inhomogeneous mixing




Effects due to
turbulence:

preferential
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Preferential concentration — enhanced local densities, more probable collisions?
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Figure 6 A slice through the computational domain of a direct numerical simulation
of homogeneous, isotropic turbulence containing particles. The gravitational accelera-
tion, particle Stokes number, kinetic energy dissipation rate, and Kolmogorov scales are
matched to those typically encountered in an atmospheric cloud. Given these scales,
the slice is 0.1 m on a side. The left panel shows vorticity contours, and the right
panel shows droplet positions, illustrating the tendency of droplets to form clusters in

regions of low vorticity. Figure adapted from Vaillancourt et al. (2002), courtesy of
P. Vaillancourt, Meteorological Service of Canada.

(Shaw, 2003)



Preferential concentration weak turbulence in cloud chamber.
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Fig. 1. Stokes number (S )-velocity ratio (S ) diagram showing location of di-
rect numerical simulations (DNS) and laboratory experiments (LAB) for particles
in 3D turbulence. The $ —§ region for cloud droplets of 5-25-um radius is shown
for an appropriate range of eddy dissipation rates (10 °~0.09 m* s*). The dashed
lines are for constant eddy dissipation rates (107, 107°, 107, and 0.09 m* s*) and
radii varying from 5 to 25 um, while the solid lines are for constant radii (5, 10, 15,
20, and 25 yum).

Vaillancourt and Yau, 2000

Turbulence and inertial
heavy particles — cloud
droplets,

Stokes number: ratio
between the
particle’s response
time (1,) and a
characteristic
timescale of the flow
(TF)’

St = TP/TF

Velocity ratio: terminal
velocity of the particle
nondimensionalized by
the Kolmogorov
velocity

Sv = VT /vn
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EXAMPLE: droplets in prescribed stretched vortex flow — 2D projection

905

150

180

Bajer et al., 2000

210

270

Figure 5: Distribution of droplets with gaussian spec-
trum after 2.5 turnover times of the vortex. Initial distri-
bution was spatially uniform.



Example: motion of droplets in small-scale vortical structure in fluid.

FiGURE 1. — Particles with different inertia released at the same position and inside a small
scale vortical structure of the fluid. The neutrally buoyant particles (red) remain strongly
trapped, while particles with higher and higher inertia, respectively greeen, blue, yellow etc,
are less and less sensitive to small scale vorticity.

F.Toschi



Length scales associated with condensational growth of droplets.

The condensational growth of droplets is characterized by vapor pressure gradients and
temperature gradients.

When the growth of an ensemble of droplets in turbulent air is considered,

the temperature and the moisture fields away from the droplet may vary considerably and the
concept of ambient conditions becomes vague. The ‘boundary conditions’ imposed between
droplets may depend on both the spatial distribution of droplets as well as on the
supersaturation and temperature fields

Vaillancourt et al. (2001) defined the ambient conditions to be the moisture

and temperature fields in the vicinity of a given droplet averaged over the volume defined by
the mean distance between droplets (so-called point-particle approach to describe the
evolution of the droplet phase (adopted by Celani et al., 2007; Lanotte et al. 2009).

Most studies of the growth of an ensemble of droplets neglect the direct thermodynamic
interaction between droplets, arguing that the mean distance between cloud droplets

(~ 2mm for a typical concentration of 100 cm™ ) is at least an order of magnitude larger
than the distance affected by the variation of moisture and temperature due to cloud droplet
growth.



Time scales associated with condensational growth of droplets

Scale of diffusional growth of an isolated droplet and in typical conditions
is less than 1x107° s.

Another time scale occurs when the boundary conditions for water-vapor concentration and
temperature at the surface of the droplet are not assumed constant. During condensation
water vapor diffuses onto the surface of the droplet, latent heat is released, and
consequently the surface temperature (the psychometric temperature) of the droplet
changes. The relaxation time associated with this process lies typically between 5x10™*s
and 1x107%s for droplet radii between 5 ym and 25 pym) SLOWEST!!!

Vaillancourt et al. (2001) showed that, for a=20um and €é=100 cm?* s~ , the ratio of this time
scale to fastest time scale associated with changes to the ambient conditions due to
turbulence (either TorT ) is much less than one and the assumption of a steady-state

distribution of water-vapor concentration and temperature is valid.

Numerical simulations by Celani et al. (2005, 2007), Lanotte et al. (2009) , Sidin et al.,
(2009) suggest that cloud droplet spectra can be broadened during condensation, which is
different from simulations of Vaillancourt et al. (2002) and from the measurements in real
clouds (as we can interpret them).



Collisions, coalescence and turbulence

The collision and coalescence of droplets in a turbulent flow are governed by
(i) geometric collisions due to droplet-turbulence interactions;

(i) collision efficiency due to droplet-droplet interactions and

(iif) coalescence efficiency due to droplet surface properties.

In practice, it is difficult to distinguish between collision and coalescence and the
experimentally measurable quantity is collection efficiency defined as the ratio of the actual
cross-section for droplet coalescence to the geometric cross-section.

Geometric collisions

DNS results (e.g. Franklin et al. 2007; Ayala et al. 2008a) show that turbulence

can increase the collision kernel relative to the case of stagnant air by two effects:
droplet relative velocity

droplet clustering.

Turbulence may also affect the droplet relative velocity through preferential sweeping
whereby droplets bias their downward trajectories towards regions of higher turbulence
thus increasing their terminal velocities relative to still air.

Caustics (sling effect) are also considered (e.g. Falkovich and Pumir, 2007)



In multidisperse suspensions, |
w | is always larger than its

monodisperse counterpart.

This can be understood by
considering a limiting case of
monodisperse suspension, in the
absence of gravity. For low St,
velocities of equally sized droplets
are strongly correlated, both with the
fluid and each other.

As St increases, the correlation of
the

droplets with the flow and each
other decreases and |w_| increases.

However, for St>>1, droplets
respond slowly to changes in the
fluid velocity and |w_ | decreases.

For multidisperse droplets, the
velocities of the droplets
decorrelate more rapidly than the
equivalent monodisperse cases
since the droplets with different
inertia respond

differently to changes in the flow.

ius in .

rad

radius in ..m

Figure 2. The ratio of a typical turbulent collision kernel to a purely
gravitational collision kernel (Grabowski and Wang, 2009). The ratio on
the 45 degree line is undefined due o the zero value of the gravitational
kernel. The ratio is essentially one when droplets are greater than 100 gm.,
The flow dissipation rates are 400 em? s—* and 100 em? s~ in the upper-
left and lower-right part of the figure respectively.
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However.....in situ measuremets...

With the improved size and spatial
resolutions of the Fast-FSSP measurements
it has been possible to identify very narrow
spectra in most of the cloud traverses ...

These spectra are much narrower than
previously measured with the standard
probe.

The regions of narrow spectra show
characteristics close to the adiabatic
reference, such as LWC values slightly
lower than the adiabatic value at that level
and values of droplet concentration close to
the maximum value within the cloud
traverse. The spectra observed in these
regions are narrow but still broader than
the adiabatic reference.

The high concentration densities of droplets
with diameter smaller than the mode can be
attributed to partial evaporation of some
droplets resulting from the mixing with dry
air. The occurrence of this process is
attested by the slightly subadiabatic values
of LWC.

Chaumat and Brenguier, 2001



Short summary of clustering and collisions:

Observations of droplet clustering in real clouds remain ambiguous which has led some
authors to question its importance in real clouds.

Moreover, DNS of sedimenting droplets has shown that turbulent enhancement of collision
rates occurs primarily through changes to the droplet relative velocity and the collision
efficiency.

Nevertheless, some argue that the vortex tubes that are associated with small-scale
turbulence at high Reynolds numbers persist for long and droplets with a considerable
range of St are able to spin out of the vortex.

The importance of intermittency in potentially increasing droplet clustering has also been
raised by Falkovich et al. (2002) who based on theoretical arguments claim that clustering
can increase collisions by a factor of 10.

Without a clear theoretical basis for the RA -dependence of clustering, which will remain
valid in the large-R limit, it is likely that these arguments will continue.
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Figure 2. Results for the marine case of June 26. Figure 3. Results for the polluted case July 18.

The 1st, 2nd, 3rd, and 4th row shows the mean droplet concentration N, the mean radius r, the mean standard deviation s,
and the mean relative dispersion d, respectively, at different heights above the cloud base. Left, middle, and right columns
are for near-adiabatic (AF > 0.9), diluted (0.5 <AF <0.9) and strongly diluted (0.1 < AF < 0.5) cloud samples,
respectively. Horizontal lines represent one standard deviation around the mean value. The dashed line shows the mean
height of the cloud top.

Pawlowska, Grabowski and Brenquier, 2006



Small-scale turbulence/rain formation in clouds — a subgrid scale
process
a) inadequate measurement capabilities
(resolution problem, different sampling volumes of various sensors)
b) subgrid-scale processes in cloud resolving and LES simulations.

Closing the gap in resolved scales
a) DNS and particles in turbulence;
b) laboratory experiments with particle tracking and collisions.
c) in situ efforts.

Issues
a) (almost) no combined measurements of microphysics,
turbulence and dynamics in small-scales;
b) problems with the statistical interpretation of data from measurements;
c) unclear subgrid-scale parameterizations in cloud simulations.

In the following: my efforts to address issues




DYCOMS-Il Probe Locations

Las-Air

plus aerosol sampling with instruments inside aircraft

Examples of the cloud edge in
1000 Hz temperature (thin
line) and LWC (thick line)
records. Sharp jumps in LWC
and temperature

at distances of the order of 10
cm (data resolution) are
currently observed. Notice a
shift between the temperature
and LWC records resulting
from the 6 m separation
between the instruments and
the low pitch angle of the
aircraft with respect to the
cloud clear air interface.

Haman et al., 2007
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similar structures — filaments of
significantly different temperatures
separated by narrow interfaces. The
bottom panel presents the evidence
for filaments of thickness of the order
of 10 cm as well as for the steep
gradients of temperature. Notice that
UFT-F in its present configuration and
signal conditioning (low-pass filtering)
is still too slow to resolve adequately
all interesting small-scale features of
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Airborne measurements of small-scale turbulent mixing in clouds

POST - Physics of Stratocumulus Top, California, 2008 aerosol (CCN)

temperature,
humidity,
liquid water,
turbulence,

droplet counting
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Turbulent cloud
chamber.

The set-up of the
experiments is
designed to mimic
basic aspects of
small-scale
turbulent mixing of
a cloudy air with
unsaturated
environment.

Schematic view of the experimental setup.
1 — box with the droplet generator; 2-cloud chamber; 3 — light sheet; 4 — pulsed
laser, 5 — cloudy plume, 6 - camera.









PIV — Particle Imaging

Velocimetry

Principle:

two consecutive frames
compared; displacement of
patterns allows to determine

two components of the veloci

Special algorithm:

iterative (with the increasing
resolution) correlation of
patterns;

mean motion removal;

iterative deformation of
patterns;

median filtering.

Result:
benchmark scenes show the

average accuracy of the
displacement detection =0.3

pixel size.
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Numerical simulations of small scales of cloud mixing with the environment.




Equations for dynamics,
thermodynamics and
microphysics (droplets)

D/Dt = d/dt + vV

Dv
E = —V+7 + . + IJ'VE"F, Non-standard symbols:
o n — normalized pressure fluctuation

V-v=0, C, — condensation rate

DT I q,, q,— specific humidity, liquid water content

. = pmrV>T,

Dt C, B — normalized buoyancy

D
L _ _ w,V3q,.
Dt

Andrejczuk et al., 2004,
Abdrejczuk et al., 2006
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Mixing diagram of
cloudy and
environmental air.
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Anisotropy of turbulent velocities due to
buoyancy production by evaporative cooling
(Malinowski et al., 2008)
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In the homogeneous mixing scenario, Extremely
the number of droplets does not change homogeneous

and the mean droplet size decreases. In
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Effect of turbulent mixing and time scale for ,
evaporation on mixing homogeneity Andrejczuk et al., 2009
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Scatter plot of the slope of the mixing line on the r — N diagram versus the ratio between the turbulent
mixing and the droplet evaporation time scales. Each data point represents analysis of instantaneous DNS
data as explained in text, with triangles (circles) depicting data points with the mixing time scale calculated
using TKE (enstrophy). The solid line is the proposed relationship to be used in subgrid-scale modeling.



Efforts by the others:
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Fig. 1. ACTOS comprises instrumentation for comprehensive measurements
of thermodynamic, microphysical, and turbulent variables in clouds, at high
spatial resolution. The ACTOS measurement payload is attached to the
" helicopter by means of a 140 m long tether cable. The true airspeed of the
10—} 0 helicopter is about 15 my/s, sufficient to enable stable flight conditions of
ACTOS out of the helicopter's downwash.
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Fig. 9. The distribution of cloud microphysical and turbulence properties in a dimensionless Stokes-settling parameter space. The upper left plot is for a
stratocumulus cloud and the remaining three are for small cumulus clouds. Each point represents data in a 1-second (approximately 15m) average. Diagonal lines
with positive slope are contours of constant turbulent energy dissipation rate, £, at values of 107*, 1072, 1072, and 10~ (lower right to upper left corners).
Diagonal lines with negative slope are contours of constant droplet diameter at values of 5, 10, 15, 20 and 25 um (lower left to upper right corners).



Particle tracking:

Bodenschatz et al.

Wind tunnel for investigation of
cloud droplets

Wahrhaft et al.

()

Figure 8. The wind tunnel in the DeFrees laboratory at Cornell used to study inertial particles
in high Reynolds number turbulence: (a) the plexiglass-open circuit-tunnel (1 m x 0.9m x 20m)
showing the camera (far left, at the beginning of its trajectory), the sled and the laser sheet. (b) The
active grid (used to generate high Reynolds number turbulence) and (c) the spray system. They are
located at the far left of (a).
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Fig. 12. Probability density function of the Lagrangian acceleration of
droplets in a turbulent wind-tunnel flow. The accelerations have been
normalized by the gravitational acceleration and scaled to reflect atmo-
spheric conditions (see text). The two PDFs are for flows with Taylor )
microscale Reynolds numbers R, = 100 {open circle) and 240 (filled circle) Active Grid Syrays Mirror Flat plate
and Stokes number 5t=0.072. Notice that the tails clearly show droplets = | / ./'
undergoing accelerations greater than those due to gravity. \41 ¥
Modified from Gerashchenko et al. (2008). 1 <
Flow
——n

Humidifiers with feeding tubes

/’

Moving sled with camera and
collimating optics

Nd:YAG
Laser

In Siebert et al.,
2010

Fig. 10. Schematic of the forward scatter experiment (top view). The two separate methods of introducing the droplets are shown together. When the sprays are
operating, the humidifiers and feeding tubes are removed from the tunnel. The y coordinate is measured vertically from the plate.
From Gerashchenko et al. (2008). Copyright Cambridge University Press.
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weather patterns updrafts/downdrafts TKE production/cascade/dissipation cloud droplets

aerosols

entrainment, stirring, mixing — fluctuations of temperature and humidity — particle growth/decay

coupled fluid-particle interactions: buoyancy effects (latent heat, mass loading); direct interactions (viscosity)

particle-particle interactions: collision rate, coalescence efficiency

Clouds are dispersions of drops and ice particles embedded in and interacting with a complex
turbulent flow. They are highly nonstationary, inhomogeneous, and intermittent, and embody
an enormous range of spatial and temporal scales. Strong couplings across those scales
between turbulent fluid dynamics and microphysical processes are integral to cloud evolution.

Turbulence drives entrainment, stirring, and mixing in clouds, resulting in strong fluctuations in
temperature, humidity, aerosol concentration, and cloud particle growth and decay. It couples
to phase transition processes (such as nucleation, condensation, and freezing) as well as
particle collisions and breakup. All these processes feed back on the turbulent flow by
buoyancy and drag forces and affect cloud dynamical processes up to the largest scales.

Bodenschatz et al., Science, 2010.



The last decades have seen the emergence of new views into the “inner workings” of
both clouds and turbulent flows.

For example, high-resolution measurements of temperature, liquid water content,
aerosol physical and chemical properties, and airflow reveal fascinating smalli-
scale cloud structures, invisible with earlier technology.

Laboratory experiments and numerical simulations are allowing us to study
details of cloud microphysics, the fine structure of turbulence, turbulent
Lagrangian dynamics, interactions and collisions between droplets.

Scale-resolving simulations merging computational methods from both cloud and
turbulence communities are yielding new insights into the wide variety of
circulation regimes.

These new tools, experimental and computational, have begun to make it possible to
explore the full complexity of microphysical and fluid-dynamical interactions within
clouds.

We can now begin to address:

How does turbulence influence phase transition processes like condensation,
evaporation, activation, and freezing taking place inside clouds?

~How does turbulence influence particle-particle interactions like collisions,
coalescence efficiencies, ice aggregation, and drop- or ice-breakup?

How do microphysical processes feed back on the turbulence through latent-
heat release, energy injection at small scales, and buoyancy reversal?

>How do small scale processes propagate to and couple to the larger scales,
such as, cloud dynamics, precipitation formation, and radiative properties?
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