Statistics of polymer extensions in turbulent channel flow

Faranggis Bagheri, ** Dhrubaditya Mitra, ** Prasad Perlekar, **, * and Luca Brandt**, *

¹Linné Flow Centre, KTH Mechanics, SE-100 44 Stockholm, Sweden ²NORDITA, Roslagstullsbacken 23, 106 91 Stockholm, Sweden ³Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Turbulent Drag Reduction (Toms, 1946)

Addition of small amount of polymer gives rise to massive drag reduction.

$$\% DR \equiv \frac{\Delta P^{f} - \Delta P^{p}}{\Delta P^{f}} \times 100$$

Simple model for single polymer

Navier-Stokes equation

$$\partial_t \boldsymbol{u} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u} = \nu \nabla^2 \boldsymbol{u} + \boldsymbol{\nabla} p$$

with the incompressibility constraint,

$$\nabla \cdot \boldsymbol{u} = 0.$$

Lagrangian Particles

$$\partial_t \mathbf{r}^{\mathbf{j}}(t|t_0,\mathbf{r}_0^j) = \mathbf{v}^{\mathbf{j}}(t|t_0,\mathbf{r}_0^j).$$

Two particle separation in channel flow

$$\mu_{\mathrm{T}}^{\mathrm{j}} = \frac{1}{T} \ln \left[\frac{|\delta \boldsymbol{x}^{\mathrm{j}}(t)|}{|\delta \boldsymbol{x}^{\mathrm{j}}(t-T)|} \right].$$

2

Change with time:

Cramer's function:

$$P(\mu_T) \sim \exp[-TS(\mu_T)]$$

$$\widehat{\mathbb{H}}_{\mathcal{S}}^{0.15} = \widehat{\mu} \tau_{\text{poly}}$$
 Wi $\equiv \widehat{\mu} \tau_{\text{poly}}$

 $S(\mu) = a_2(\mu - \bar{\mu})^2 + a_3(\mu - \bar{\mu})^3 + a_4(\mu - \bar{\mu})^4$

Cramer's function and PDF of polymer extensions:

Coil-stretch Transition

PDF of polymer extension

Maximum of polymer extensions

Orientation w.r.t. Channel geometry

wall

centre

Orientation w.r.t. Local vorticity

centre

Orientation w.r.t. Local strain

wall

centre

Conclusion

First calculation of Cramer's function in channel flows

Verification of analytical theory of polymer stretching

Coil-stretch transition

Polymers are more stretched near the wall.

The orientation of the polymers is determined by the mean shear.