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A. The persistence problem in two-dimensional fluid turbulence :

1. Motivation: The persistence problem in nonequilibrium
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3. Okubo-Weiss parameter: A natural candidate for the study of
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4. Conclusions.



Two dimensional flows in nature

Von Kármán vortex street off the Chilean coast near the Juan
Fernandez Islands.



Two dimensional flows in Jupiter atmosphere

◮ Great red spot around 350 years old,

◮ Size: 2− 3 earth diameters,

◮ Estimated wind speeds approximately 619km/h; easily fits
into Type-V hurricanes (speeds above 249km/h).



Two dimensional flow in laboratory

Soap film flow behind two cylinders



Two dimensional Navier-Stokes

Vorticity-streamfunction formulation:

◮ ω ≡ (∂xuy − ∂yux).

◮ ux ≡ −∂yψ; uy ≡ ∂xψ.

Dtω = ν∇2ω + fω,

∇2ψ = ω,

(1)

◮ No vortex stretching; ω.∇u is absent.



Two-dimensional Navier-Stokes: Conservation laws

[U. Frisch, Turbulence]

◮ Energy and enstrophy conserved in the inviscid, unforced limit.

◮ Energy and enstrophy balance in the unforced, viscous 2D NS
equations

∂tE = −2νΩ,

∂tΩ = −2νP .

where,
E = 1/2

∫

x∈R3 |u|
2,Ω = 1/2

∫

x∈R3 |ω|
2, and

P = 1/2
∫

x∈R3 |∇ × ω|2.

◮ lim ν → 0, Ω → const. and E → 0. No dissipative anamoly
for energy!



Two-dimensional Turbulence: Cascades
[Kraichnan, Phys. Fluids, 10, (1967a), Batchelor, Phys. Fluids
Suppl. II , 12, (1969)]

◮ Energy injected at a length scale linj will inverse-cascade to
large length scales with E (k) ∼ k−5/3.

◮ Energy injected at a length scale linj will forward-cascade to
small length scales with E (k) ∼ k−3.



Direct Numerical Simulation(DNS)

◮ Vorticity-streamfunction formulation

Dtω = ∇2ω − γω + Gf ,

∇2ψ = ω,

u = (−∂yψ, ∂xψ).

◮ x′ → x/ℓinj , t
′ → tν/ℓ2inj , f

′
ω → fω(ℓinj/||fω||2)

◮ G ≡ 2π||fω||2/(k
3
injρν

2) and γ = α/(k2injν)

◮ Incompressibility satisfied by construction



Persistence problem

Satya N. Majumdar, Persistence in Nonequilibrium Systems,
Curent Science, 77, 370 (1999); cond-mat/9907407v1
Let φ(x , t) be a nonequilibrium field fluctuating in space and time
according to some dynamics. Persistence is simply the probability
P0(t) that at a fixed point in space, the quantity
sgn[φ(x , t) − 〈φ(x , t)〉] does not change upto time t.



The Okubo-Weiss parameter

◮ From the velocity-gradient tensor A, with components
Aij ≡ ∂iuj , we obtain the Okubo-Weiss parameter Λ, the
discriminant of the characteristic equation for A.

◮ If Λ is positive (negative) then the flow is
vortical (extensional).

◮ In an incompressible flow in two dimensions Λ = detA; and
the PDF of Λ has been shown to be asymmetrical about
Λ = 0 (vortical regions are more likely to occur than
strain-dominated ones).



Motivation

◮ Note 〈Λ〉 = 0.

◮ How long does a Lagrangian particle stay in region where
Λ > 0 (center) or where Λ < 0 (saddle).

◮ How long does the Λ field not change sign at a position (x , y)
i.e., persistence time of a center or a saddle.



Persistence in two-dimensional turbulence

◮ Lagrangian persistence: We follow Np particles and evaluate Λ
along their trajectories.

◮ Eulerian persistence: We monitor the time evolution of Λ at N
positions in the simulation domain.

◮ For both the cases find the time-intervals τ over which Λ > 0
or Λ < 0. The PDF of these intervals characterizes the analog
of persistence in two dimensional turbulence.



Persistence-time PDF

◮ We denote the persistence-time PDFs by P ; the subscripts E
and L on these PDFs signify Eulerian and Lagrangian frames,
respectively; and the superscripts + or − distinguish PDFs
from vortical points from those from extensional ones.

◮ To find out the persistence-time PDF P+
E (τ) [resp., P−

E (τ)]
we analyse the time-series of Λ obtained from each of the Np

Eulerian points and construct the PDF of the time-intervals τ
over which Λ remains positive (resp., negative).

◮ The same method applied to the time series of Λ, obtained
from each of the Np Lagrangian particles, yields P+

L (τ) [resp.,
P−
L (τ)].



Simulation details

N ν µ F0 kinj ld λ Reλ T
−

E
T

−

L
T+
E

512 0.016 0.1 45 10 0.023 0.17 59.2 0.6 0.12 0.34
512 0.016 0.45 45 10 0.021 0.11 26.8 0.4 0.15 0.28

1024 10−5 0.01 0.005 10 0.0043 0.125 827.3 20.0 9.9 14.28

1024 10−5 0.01 0.005 4 0.0054 0.198 1318.8 33.3 12.5 25.0



Time series of Λ

Lagrangian versus Eulerian frame

◮ Lagrangian Λ tracks (red) show rapid fluctuations in
comparison to the corresponding Eulerian tracks (black).

◮ Autocorrelation CΛ = 〈Λ(t0)Λ(t0 + t)〉 decays faster for the
Lagrangian case.



Persistence: particle in a vortex

◮ Re = 59.2, kinj = 10, α = 0.1 (×),

◮ Re = 26.8, kinj = 10, α = 0.45 (�),

◮ Re = 827.3, kinj = 4, α = 0.01 (△),

◮ Re = 1318.8, kinj = 10, α = 0.01 (+).



Persistence: particle in a vortex

◮ PC (τ) = τ−(β−1), β = 2.9± 0.2.

◮ Independent of Re, kinj , and α



Persistence: particle in a region of strain

◮ Lin-log plot of the persistence time of the particle in a region
of strain.



Persistence: Region of vorticity at (x , y)

◮ Lin-log plot of the persistence time of the region of vorticity
at position (x , y).



Persistence: Region of strain at (x , y)

◮ Lin-log plot of the persistence time of the region of strain at
position (x , y).



Conclusion

◮ The Okubo-Weiss parameter provides us with a natural way of
formulating and studying the persistence problem in
two-dimensional fluid turbulence.

◮ The persistence-time PDF of Lagrangian particles in vortical
and strain-dominated regions are different.

◮ The persistence-time PDF of Lagrangian particles in vortical
regions show a power-law tail with an exponent β = 2.9.

◮ The persistence-time PDF of Lagrangian particles in
strain-dominated regions shows an exponential tail.



Critical Phenomena

Γ(r , t, h) ≈ 1
rd−2+ηF(tνξ, h/t∆)

◮ r : separation between the spins in d dimensions

◮ t ≡ (T − Tc)/Tc

◮ h ≡ H/kBTc

◮ kB : Boltzmann constant

◮ T : temperature

◮ Tc : critical temperature

◮ H: magnetic field

◮ ξ: correlation length (diverges at criticality)

◮ η, ν and ∆: static critical exponents

◮ F : universal scaling function



Critical Phenomena

In Fourier space
Γ̃(q, t, h) ≈ 1

q2−ηF(tνξ, h/t∆);

~q: wave vector with magnitude q

Dynamic scaling for time-dependent correlation functions in the
vicinity of a critical point.
Γ̃(q, ω, t, h) ≈ 1

q2−η G(q
−zω, tνξ, h/t∆);

◮ z : dynamic critical exponent

◮ ω: frequency

◮ G: a scaling function

Relaxation time τ diverges as

τ ∼ ξz .



Equal-Time Structure Functions

◮ Order-p, equal-time, structure functions:

Sp(r) ≡ 〈[δu‖(~x ,~r , t)]
p〉 ∼ r ζp

δu‖(~x ,~r , t) ≡ [~u(~x +~r , t)− ~u(~x , t)] ·
~r

r

ηd : Kolmogorov dissipation scale;
L: large length scale at which energy is injected into the
system.

◮ Experiments favour multiscaling: ζp a nonlinear, convex
monotone increasing function of p.

◮ Simple-scaling prediction of Kolmogorov: ζK41
p = p/3.



Introduction : Frames of Reference

◮ Eulerian :
The Navier-Stokes equation is written in terms of the Eulerian
velocity u at position x and time t. In the Eulerian case the
frame of reference is fixed with respect to the fluid;

◮ Lagrangian :
Frame of reference fixed to a fluid particle; this fictitious
particle moves with the flow and its path is known as a
Lagrangian trajectory.

v =

(

dR

dt

)

r0

;

◮ Quasi-Lagrangian :
It uses the following transformation for an Eulerian field
ψ(r, t):

ψ̂(r, t) ≡ ψ[r + R(t; r0, 0), t].



Time-Dependent Structure Functions

◮ The order-p, time-dependent longitudinal structure function:

Fp(r , {t1, . . . , tp}) ≡ 〈[δu‖(~x , t1, r) . . . δu‖(~x , tp , r)]〉

For simplicity we consider t1 = t and t2 = . . . = tp = 0.

◮ Given F(r , t), different ways of extracting time scales yield
different exponents that are defined via dynamic-multiscaling
ansätze:

Tp(r) ∼ r zp .



The GOY Shell Model

The evolution equation for the GOY shell model takes the form,

[
d

dt
+ νk2n ]un = i(anun+1un+2 + bnun−1un+1 + cnun−1un−2)

∗ + fn.

◮ In the shell model equation,
◮ kn = k02

n, where k0 = 1/16;
◮ an = kn, bn = −δkn−1, cn = −(1− δ)kn−2, where δ = 1/2.



Simulation Details

◮ We use the slaved Adams-Bashforth scheme to integrate the
GOY shell model equation with 22 shells.

◮ We use δt = 10−4 and ν = 10−7.

◮ For statistically steady turbulence, we use external forcing to
drive the system.

◮ We study decaying turbulence by using two kinds of initial
conditions:

1. a random configuration where all the energy is concentrated at
large length scales;

2. a configuration obtained from a statistically steady turbulent
state.



Details: Forced Turbulence

◮ We start from an initial condition where all the energy is

concentrated in the large length scales, i.e., v0n = k
−1/3
n e iθn

(for n = 1,2) and v0n = 0 (for n = 3 to 22), with θn a random
phase angle distributed uniformly between 0 and 2π.

◮ The system is then driven to a statistically steady state with a
force fn = δn,1(i + i)× 5× 10−3.

◮ All measurements are made once the system reaches a
statistically steady state.



Details: Decaying Turbulence

◮ For the first initial condition we use v0n = k
1/2
n e iθn (for n =

1,2) and v0n = k
1/2
n e−kn

2
e iθn (for n = 3 to 22) with θn a

random phase angle distributed uniformly between 0 and 2π.

◮ For the second initial condition, we first achieve a forced
statistically steady state, with fn = δn,1(i + i)× 5× 10−3 .
The force is then switched off at some time origin t0 and the
system is allowed to decay freely.

◮ Our exponents are independent of the kind of initial condition
we choose.



Error Estimates (GOY)

◮ Static solution exhibit a 3-cycle in the shell index n.

◮ Obtain 50 different values of each of the exponents from 50
independent simulations.

◮ Time-averaging is done over a time Tav = 105 × τL to obtain
the results for statistically steady state quantities. For
decaying turbulence, we average over 20000 statistically
independent initial configurations.

◮ The means of these 50 values for each of the
dynamic-multiscaling exponents are shown in figure and the
standard deviation yields error.

◮ This averaging is another way of removing the effects of the
3-cycle mentioned above.



Principal Results: Fluid Turbulence

◮ Simple dynamic scaling for Eulerian-velocity structure
functions (zEp = 1).

◮ Dynamic multiscaling is obtained for Lagrangian or
Quasi-Lagrangian structure functions.

◮ Dynamic multiscaling exponents zp depend on how Tp(r) is
extracted.

◮ zp is related to the equal-time exponents via bridge relations.

◮ Universality of dynamic exponents: the same for decaying and
statistically steady turbulence.



Integral Time Scale

◮ From the longitudinal, time-dependent, order-p structure
functions, the order-p, degree-M, integral time scale is defined
as,

T I
p,M(r) ≡

[

1

Sp(r)

∫ ∞

0
Fp(r , t)t

(M−1)dt

](1/M)

◮ The integral dynamic multiscaling exponent z Ip,M is defined as

T I
p,M(r) ∼ r

z I
p,M .



Derivative Time Scale

◮ Similarly, the order-p, degree-M derivative time scale is
defined as

T D
p,M(r) ≡

[

1

Sp(r)

∂MFp(r , t)

∂tM

](−1/M)

◮ The derivative dynamic multiscaling exponent zDp,M is defined
as

T D
p,M(r) ∼ r

zD
p,M .



Theoretical Prediction

◮ The multifractal model predicts the following bridge relations:

z Ip,M = 1 +
[ζp−M − ζp]

M
;

zDp,M = 1 +
[ζp − ζp+M ]

M
.



Extending the Frisch-Parisi Multifractal Model

Dynamic Structure Functions

Fp(ℓ, t) ∝

∫

I
dµ(h)(

ℓ

L
)Z(h)Gp,h(

t

τp,h
),

where Gp,h( t
τp,h

) has a characteristic decay time

τp,h ∼ ℓ/δv(ℓ) ∼ ℓ1−h, and Gp,h(0) = 1. If
∫∞
0 t(M−1)Gp,hdt

exists, then the order-p, degree-M, integral time scale is

T I
p,M(ℓ) ≡

[

1

Sp(ℓ)

∫ ∞

0
Fp(ℓ, t)t

(M−1)dt

](1/M)

.

* V.S. L’vov, E. Podivilov, and I. Procaccia, Phys. Rev. E 55,7030
(1997).



Multifractal Model

T I
p,1(ℓ) ≡

[

1

Sp(ℓ)

∫ ∞

0
Fp(ℓ, t)dt

](1/M)

∝

[

1

Sp(ℓ)

∫

I
dµ(h)(

ℓ

L
)Z(h)

∫ ∞

0
dtGp,h(

t

τp,h
)

]

∝

[

1

Sp(ℓ)

∫

I
dµ(h)(

ℓ

L
)ph+3−D(h)ℓ1−h

]

In the last step, we have used :

τp,h ∼ ℓ/δv(ℓ) ∼ ℓ1−h



Multifractal Model

◮ Corresponding Bridge Relations :

z Ip,1 = 1 + [ζp−1 − ζp],

zDp,2 = 1 + [ζp − ζp+2]/2.

◮ Bridge relations reduce to zK41
p = 2/3 if we assume K41

scaling for the equal-time structure functions.



Numerical studies of dynamic multiscaling

◮ L. Biferale, G. Bofetta, A. Celani, and F. Toschi, Physica D
127 187 (1999); this study uses an exit-time method.

◮ Our group has concentrated on an elucidation of dynamic
multiscaling by using time-dependent structure functions and
(a) shell models and
(b) the two-dimensional Navier-Stokes equation with Ekman
friction.

In the following slides we give an overview of our results without
technical details.



Results
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Plots of order-p structure functions vs the dimensionless time for
various shells for statistically steady (left) and decaying (right)
turbulence.



Integral Time Scales
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Log-log plots of integral times for statistically steady (left) and
decaying (right) turbulence for order-p structure functions; the
slopes of these graphs yield z Ip,1. The integration is carried out
over time 0 to tu, where we choose tu such that Fp(n, tu) (or
Qp(n, tu)) = α for all n and p.



Derivative Time Scales
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The analogue of the previous figure for derivative time scales yields
zDp,1. We use a centered, sixth-order, finite-difference scheme by
extending Fp(n, t) (or Qp(n, t)) to negative t via Fp(n,−t)(or
Qp(n,−t)) = Fp(n, t)(or Qp(n, t)) to obtain the derivative time
scales.



Passive Scalars

◮ We use two different kinds of velocity fields in the
advection-diffusion equation for both statistically steady and
decaying turbulence:

◮ Model A : The Kraichnan ensemble where each component of
u is a zero-mean, delta-correlated Gaussian random variable.

◮ Model B : Velocities from the GOY shell model.



Principal Results: Passive-Scalars

◮ Dynamic multiscaling is obtained only if the advecting velocity
is intermittent.

◮ Simple dynamic scaling is obtained for a simple version of the
passive-scalar problem (Kraichnan), in which the advecting
velocity field is Gaussian, even though equal-time structure
functions display multiscaling in this model.

◮ For intermittent velocity fields, different time scales can be
extracted.

◮ zp related to ζp through bridge relations.

◮ Universality: Dynamic exponents for decaying and statistically
steady passive-scalar turbulence are equal.



Model A

◮ The covariance of the field is

< ui (x, t)uj (x+ r, t ′) >= 2Dijδ(t − t ′)

where the Fourier Transform of Dij has the form

D̃ij(q) ∝
(

q2 +
1

L2

)−(d+ξ)/2
e−ηq2

[

δij −
qiqj

q2

]

.

In the limits L −→ ∞ and η −→ 0, Dij in real space is

Dij(r) = D0δij −
1

2
dij(r))

where,

dij = D1r
ξ
[

(d − 1 + ξ)δij − ξ
ri rj

r2

]



Passive-scalar shell models

[

d

dt
+ κk2

n

]

θn = ı

[

an(θ
∗

n+1u
∗

n−1 − θ∗n−1u
∗

n+1) + bn(θ
∗

n−1u
∗

n−2 + θ∗n−2un−1)

+ cn(θ
∗

n+2un+1 + θ∗n+1u
∗

n+2)

]

+ fn,

where the asterisks denote complex conjugation, an = kn/2,
bn = −kn−1/2, and cn = kn+1/2; fn is an additive force that is
used to drive the system to a steady state; the boundary conditions
are u−1 = u0 = θ−1 = θ0 = 0; uN+1 = uN+2 = θN+1 = θN+2 = 0.

◮ For the Kraichnan model, the advecting velocity variables are
taken to be zero-mean, white-in-time, Gaussian random
complex variables with covariance
〈un(t)u

∗
m(t

′)〉 = C2k
−ξ
n δmnδ(t − t ′).

◮ For a ”turbulent” passive-scalar field, the advecting velocity
field is a solution of the GOY shell model.



Model A

This model shows multiscaling for equal-time passive-scalar
structure functions for 0 < ξ < 2.



Dynamic Multiscaling in Passive-Scalars

Multifractal model predicts:

◮ zDp,M = 1− ζuM/M

◮ z Ip,M = 1− |ζu−M |/M

◮ Breakdown of simple scaling.

◮ Does structure functions with negative exponents exists?



Analytical and Numerical Results
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A comparison of our numerical and analytical results for model A
second-order structure function in decaying turbulence.



Model A: Numerical Results

◮ Analytical work shows that for Model A the time-dependent
structure functions decay exponentially.

◮ A log-log plot of the characteristic decay time vs the wave
vectors yield the dynamic exponent zp.

◮ It is shown analytically that for all order-p time-dependent
structure functions, zp = 2− ξ.

◮ Our numerics support this prediction for decaying
passive-scalar fields.



Model A: Numerical Results
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A plot of the fourth-order structure function (ξ = 0.6) vs time for
statistically steady turbulence. The scaling exponent is extracted
from the decay constant of the curves.



Model A: Numerical Results
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The slope of a log-log plot of the decay constant vs the
wave-vector yields the dynamic scaling exponent for the
fourth-order structure function.



Model A: Numerical Results

0 1 2 3

x 10
−3

−0.5

0

0.5

1

1.5

τ

S
2
(k

n
,τ

)

1 2 3

−6

−5

−4

−3

−2

lo
g

1
0
[T

2
(k

n
)]

log
10

(k
n
)

z
2
 = 1.408 

A plot of the second-order dynamic structure function for decaying
turbulence. The slope of a log-log plot (inset) of the decay time vs

the wave-vector yields the dynamic exponent .



Model B: Numerical Results
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Plots of the second-order time-dependent structure function vs the
dimensionless time for statistically steady (left) and decaying
turbulence (right).



Cumulative pdf for um
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Negative Exponents

◮ For small |um|, P
cum[|um|] ∼ |um|

1.8.

◮ P [|um|] ∼ |um|
0.8.

◮ S−1(m) ≡
∫

P [x ] 1
x
dx ∼

∫

x−0.2dx exists.

◮ But Sp(m) for p ≈ −1.8 does not.

◮ T I
p,M for M > 2 does not exist.

◮ Measurement of a static quantity (P(x)) gives us information
about existence of a dynamic quantity T I

p,M .



Model B: Integral Time Scale
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A log-log plot of the integral time scale vs the wave-vector in
decaying turbulence. The linear fit gives us the scaling exponent
z Ip,M .



Derivative Time Scale
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A log-log plot of the derivative time scale vs the wave-vector in
decaying turbulence. The linear fit gives us the scaling exponent
zDp,M .



Exponents for dynamic multiscaling in shell models

order(p) ζup z
I ,u
p,1[Theory] z

I ,u
p,1 z

D,u
p,2 [Theory] z

D,u
p,2

1 0.379 ± 0.008 0.621 ± 0.008 0.61 ± 0.03 0.68 ± 0.01 0.699 ± 0.008
2 0.711 ± 0.002 0.66 ± 0.01 0.68 ± 0.01 0.716 ± 0.008 0.723 ± 0.006
3 1.007 ± 0.003 0.704 ± 0.005 0.711 ± 0.001 0.74 ± 0.01 0.752 ± 0.005
4 1.279 ± 0.006 0.728 ± 0.009 0.734 ± 0.002 0.76 ± 0.02 0.76 ± 0.01
5 1.525 ± 0.009 0.75 ± 0.02 0.755 ± 0.002 0.77 ± 0.02 0.77 ± 0.02
6 1.74 ± 0.01 0.78 ± 0.02 0.78 ± 0.03 0.77 ± 0.03 0.78 ± 0.02

order(p) ζθp z
I ,θ
p,1 z

D,θ
p,2

1 0.342 ± 0.002 0.522 ± 0.002 0.632 ± 0.003
2 0.634 ± 0.003 0.531 ± 0.004 0.647 ± 0.003
3 0.873 ± 0.003 0.553 ± 0.006 0.646 ± 0.003
4 1.072 ± 0.004 0.563 ± 0.003 0.642 ± 0.005
5 1.245 ± 0.004 0.562 ± 0.006 0.643 ± 0.006
6 1.370 ± 0.006 0.576 ± 0.006 0.640 ± 0.005



Dynamic Multiscaling in
Two-dimensional Fluid

Turbulence



Multiscaling and quasi-Lagrangian Structure Functions

◮ Multiscaling in equal-time, Eulerian vorticity structure
functions.

◮ Dynamic-multiscaling in time-dependent vorticity structure
functions for Eulerian and quasi-Lagrangian fields.

◮ Tracking a single particle in a 2D flow with Ekman friction to
generate quasi-Lagrangian fields.

Movie



Steady State quasi-Lagrangian Vorticity Field

A pseudocolor plot of the quasi-Lagrangian vorticity field in the
statistically steady state.



Equal-time Structure Functions
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Eulerian
Quasi−Lagrangian

The third order structure function for the Eulerian (red) and
quasi-Lagrangian (blue) fields.



Equal-time Structure Functions : quasi-Lagrangian

The isotropic sector for the third order structure function for the
quasi-Lagrangian field.



Equal-time Exponents for Vorticity Structure Functions
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The equal-time exponents ζp, for the vorticity field, versus p for
Eulerian (in red) and quasi-Lagrangian (in blue) fields.



Time-dependent Structure Functions
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A log-log plot of T I
2,1 versus the separation r ; the data points are

shown by open red circles and the straight black line shows the line
of best fit in the inertial range.



Exponents from 2D DNS

order(p) ζqLp z
I ,qL
p,1 [Theory] z

I ,qL
p,1 z

D,qL
p,2 [Theory] z

D,qL
p,2

1 0.625 ± 0.003 0.375 ± 0.007 0.37 ± 0.02 0.541 ± 0.008 0.53 ± 0.02
2 1.131 ± 0.005 0.49 ± 0.02 0.48 ± 0.01 0.618 ± 0.009 0.62 ± 0.2
3 1.541 ± 0.005 0.58 ± 0.01 0.57 ± 0.01 0.66 ± 0.01 0.67 ± 0.01
4 1.895 ± 0.004 0.65 ± 0.01 0.65 ± 0.01 0.675 ± 0.008 0.66 ± 0.03
5 2.222 ± 0.008 0.67 ± 0.01 0.65 ± 0.02 0.70 ± 0.01 0.70 ± 0.02
6 2.544 ± 0.004 0.68 ± 0.01 0.66 ± 0.02 0.71 ± 0.02 0.71 ± 0.03



Effect of Ekman Friction

10
0

10
1

10
2

10
−10

10
−5

log k

lo
g 

E
(k

)

µ = 0.01
µ = 0.05
µ = 0.1

A log-log plot of the energy spectrum versus the wavevector k for
various values of µ.



Conclusions

◮ We have checked that bridge relations hold for the vorticity
structure functions in the forward cascade in 2D turbulence.

◮ We have also studied time-dependent structure functions in a
shell model for MHD turbulence (with S.S. Ray and G.
Sahoo); but here it is not clear how to obtain bridge relations.


