Time scales, persistence, and dynamic mutiscaling in two-dimensional, homogeneous, isotropic fluid turbulence

Rahul Pandit

Department of Physics Indian Institute of Science Bangalore, India. Kavli Institute of Theoretical Physics 31 March 2011

- This work has been done with
 - Dhrubaditya Mitra
 - Prasad Perlekar
 - Samriddhi Sankar Ray

► Support: CSIR, DST, UGC (India) and SERC (IISc)

References

- Dynamic Multiscaling in Fluid Turbulence : An Overview, D. Mitra and R. Pandit, Physica A 318, 179 (2003).
- Varieties of Dynamic Multiscaling in Fluid Turbulence, D. Mitra and R. Pandit. Phys. Rev. Lett. 93, 024501 (2004).
- Dynamics of Passive-Scalar Turbulence, D. Mitra, R. Pandit, Phys. Rev. Lett. 95, 144501 (2005).
- Dynamic Multiscaling in Turbulence, R. Pandit, S. S. Ray, and D. Mitra, Eur. Phys. J. B 64, 463 (2008).
- The Universality of Dynamic Multiscaling in Homogeneous, Isotropic Navier-Stokes and Passive-Scalar Turbulence, S. S. Ray, D. Mitra, and R. Pandit, New J. of Phys. 10, 033003 (2008).
- The Persistence Problem in Two-Dimensional Fluid Turbulence, P. Perlekar, S. S. Ray, D. Mitra, and R. Pandit, Phys. Rev. Lett. 106, 054501 (2011).
- Dynamic Multiscaling in Two-dimensional Turbulence, S. S. Ray, P. Perlekar, D. Mitra, and R. Pandit, to be submitted.

Outline

- A. The persistence problem in two-dimensional fluid turbulence :
 - 1. Motivation: The persistence problem in nonequilibrium statistical mechanics.
 - 2. Two-dimensional fluid turbulence.
 - 3. Okubo-Weiss parameter: A natural candidate for the study of persistence in two-dimensional fluid turbulence.
 - 4. Calculations and results.
 - 5. Conclusions

Outline

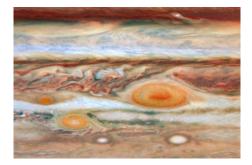
B. The dynamic multiscaling of time-dependent structure functions in turbulence :

- 1. Motivation: Critical phenomena in statistical mechanics.
- 2. The Universality of Dynamic Multiscaling in Homogeneous, Isotropic in Three-dimensional Turbulence.
- 3. Dynamic Multiscaling in Two-dimensional Fluid Turbulence.
- 4. Conclusions.

Two dimensional flows in nature

Von Kármán vortex street off the Chilean coast near the Juan Fernandez Islands.

Two dimensional flows in Jupiter atmosphere



- Great red spot around 350 years old,
- Size: 2-3 earth diameters,
- Estimated wind speeds approximately 619km/h; easily fits into Type-V hurricanes (speeds above 249km/h).

Two dimensional flow in laboratory

Soap film flow behind two cylinders

Two dimensional Navier-Stokes

Vorticity-streamfunction formulation:

•
$$\omega \equiv (\partial_x u_y - \partial_y u_x).$$

• $u_x \equiv -\partial_y \psi; u_y \equiv \partial_x \psi.$

$$D_t \omega = \nu \nabla^2 \omega + \mathbf{f}^{\omega},$$

$$\nabla^2 \psi = \omega,$$

1	1	١
l	т	J

• No vortex stretching; $\omega . \nabla \mathbf{u}$ is absent.

Two-dimensional Navier-Stokes: Conservation laws

[U. Frisch, Turbulence]

- Energy and enstrophy conserved in the inviscid, unforced limit.
- Energy and enstrophy balance in the unforced, viscous 2D NS equations

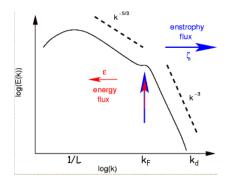
 $\begin{array}{rcl} \partial_t E &=& -2\nu\Omega,\\ \partial_t\Omega &=& -2\nu P. \end{array}$

where, $$\begin{split} E &= 1/2 \int_{\mathbf{x} \in R^3} |\mathbf{u}|^2, \Omega = 1/2 \int_{\mathbf{x} \in R^3} |\omega|^2, \text{ and } \\ P &= 1/2 \int_{\mathbf{x} \in R^3} |\nabla \times \omega|^2. \end{split}$$

► $\lim \nu \to 0$, $\Omega \to const.$ and $E \to 0$. No dissipative anamoly for energy!

Two-dimensional Turbulence: Cascades

[Kraichnan, Phys. Fluids, **10**, (1967*a*), Batchelor, Phys. Fluids Suppl. *II*, **12**, (1969)]



- ► Energy injected at a length scale *l_{inj}* will inverse-cascade to large length scales with *E(k)* ~ *k*^{-5/3}.
- Energy injected at a length scale l_{inj} will forward-cascade to small length scales with E(k) ~ k⁻³.

Direct Numerical Simulation(DNS)

Vorticity-streamfunction formulation

$$D_t \omega = \nabla^2 \omega - \gamma \omega + \mathcal{G} f,$$

$$\nabla^2 \psi = \omega,$$

$$\mathbf{u} = (-\partial_y \psi, \partial_x \psi).$$

►
$$\mathbf{x}' \rightarrow \mathbf{x}/\ell_{inj}, \ t' \rightarrow t\nu/\ell_{inj}^2, \ f'_{\omega} \rightarrow f_{\omega}(\ell_{inj}/||f_{\omega}||_2)$$

•
$$\mathcal{G} \equiv 2\pi ||f_{\omega}||_2 / (k_{inj}^3 \rho \nu^2)$$
 and $\gamma = \alpha / (k_{inj}^2 \nu)$

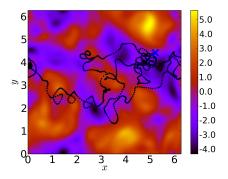
Incompressibility satisfied by construction

Satya N. Majumdar, Persistence in Nonequilibrium Systems, Curent Science, **77**, 370 (1999); cond-mat/9907407v1 Let $\phi(x, t)$ be a nonequilibrium field fluctuating in space and time according to some dynamics. Persistence is simply the probability $P_0(t)$ that at a fixed point in space, the quantity $sgn[\phi(x, t) - \langle \phi(x, t) \rangle]$ does not change upto time t.

The Okubo-Weiss parameter

- From the velocity-gradient tensor A, with components A_{ij} ≡ ∂_iu_j, we obtain the Okubo-Weiss parameter Λ, the discriminant of the characteristic equation for A.
- ► If A is positive (negative) then the flow is vortical (extensional).
- In an incompressible flow in two dimensions Λ = detA; and the PDF of Λ has been shown to be asymmetrical about Λ = 0 (vortical regions are more likely to occur than strain-dominated ones).

Motivation



- Note $\langle \Lambda \rangle = 0$.
- ► How long does a Lagrangian particle stay in region where $\Lambda > 0$ (center) or where $\Lambda < 0$ (saddle).
- How long does the Λ field not change sign at a position (x, y)
 i.e., persistence time of a center or a saddle.

Persistence in two-dimensional turbulence

- Lagrangian persistence: We follow N_p particles and evaluate Λ along their trajectories.
- Eulerian persistence: We monitor the time evolution of Λ at N positions in the simulation domain.
- For both the cases find the time-intervals τ over which Λ > 0 or Λ < 0. The PDF of these intervals characterizes the analog of persistence in two dimensional turbulence.

Persistence-time PDF

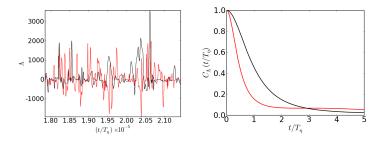
- We denote the persistence-time PDFs by P; the subscripts E and L on these PDFs signify Eulerian and Lagrangian frames, respectively; and the superscripts + or - distinguish PDFs from vortical points from those from extensional ones.
- To find out the persistence-time PDF P⁺_E(τ) [resp., P⁻_E(τ)] we analyse the time-series of Λ obtained from each of the N_p Eulerian points and construct the PDF of the time-intervals τ over which Λ remains positive (resp., negative).
- The same method applied to the time series of Λ , obtained from each of the N_p Lagrangian particles, yields $P_L^+(\tau)$ [resp., $P_L^-(\tau)$].

Simulation details

Ν	ν	μ	F ₀	k _{inj}	l _d	λ	${\it Re}_\lambda$	$T_{\rm E}^{-}$	$T_{\rm L}^-$	$T_{\rm E}^+$
512	0.016	0.1	45	10	0.023	0.17	59.2	0.6	0.12	0.34
512	0.016	0.45	45	10	0.021	0.11	26.8	0.4	0.15	0.28
1024	10^{-5}	0.01	0.005	10	0.0043	0.125	827.3	20.0	9.9	14.28
1024	10^{-5}	0.01	0.005	4	0.0054	0.198	1318.8	33.3	12.5	25.0

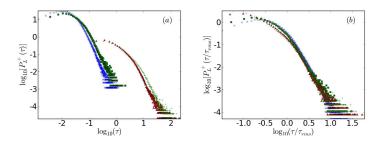
Time series of Λ

Lagrangian versus Eulerian frame

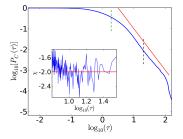


- Lagrangian A tracks (red) show rapid fluctuations in comparison to the corresponding Eulerian tracks (black).
- Autocorrelation $C_{\Lambda} = \langle \Lambda(t_0) \Lambda(t_0 + t) \rangle$ decays faster for the Lagrangian case.

Persistence: particle in a vortex



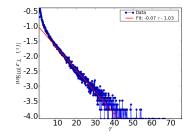
Persistence: particle in a vortex



•
$$P^{C}(\tau) = \tau^{-(\beta-1)}, \ \beta = 2.9 \pm 0.2.$$

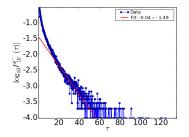
• Independent of Re , $\mathit{k_{inj}}$, and α

Persistence: particle in a region of strain

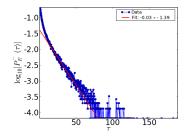


 Lin-log plot of the persistence time of the particle in a region of strain.

Persistence: Region of vorticity at (x, y)



Lin-log plot of the persistence time of the region of vorticity at position (x, y). Persistence: Region of strain at (x, y)



Lin-log plot of the persistence time of the region of strain at position (x, y).

Conclusion

- The Okubo-Weiss parameter provides us with a natural way of formulating and studying the persistence problem in two-dimensional fluid turbulence.
- The persistence-time PDF of Lagrangian particles in vortical and strain-dominated regions are different.
- The persistence-time PDF of Lagrangian particles in vortical regions show a power-law tail with an exponent β = 2.9.
- The persistence-time PDF of Lagrangian particles in strain-dominated regions shows an exponential tail.

Critical Phenomena

 $\Gamma(r,t,h) pprox rac{1}{r^{d-2+\eta}} \mathcal{F}(t^
u \xi,h/t^\Delta)$

- r: separation between the spins in d dimensions
- $\bullet \ t \equiv (T T_c)/T_c$
- $h \equiv H/k_B T_c$
- *k_B*: Boltzmann constant
- ► T: temperature
- *T_c*: critical temperature
- H: magnetic field
- ξ : correlation length (diverges at criticality)
- η , ν and Δ : static critical exponents
- ► *F*: universal scaling function

Critical Phenomena

In Fourier space $\tilde{\Gamma}(q, t, h) \approx \frac{1}{q^{2-\eta}} \mathcal{F}(t^{\nu}\xi, h/t^{\Delta});$ \vec{q} : wave vector with magnitude qDynamic scaling for time-dependent correlation functions in the vicinity of a critical point. $\tilde{\Gamma}(q, \omega, t, h) \approx \frac{1}{q^{2-\eta}} \mathcal{G}(q^{-z}\omega, t^{\nu}\xi, h/t^{\Delta});$

- z: dynamic critical exponent
- ω : frequency
- \mathcal{G} : a scaling function

Relaxation time τ diverges as

 $\tau \sim \xi^z.$

Equal-Time Structure Functions

Order-p, equal-time, structure functions:

$$\mathcal{S}_{p}(r) \equiv \langle [\delta u_{\parallel}(\vec{x},\vec{r},t)]^{p} \rangle \sim r^{\zeta_{p}}$$

$$\delta u_{\parallel}(\vec{x},\vec{r},t) \equiv [\vec{u}(\vec{x}+\vec{r},t)-\vec{u}(\vec{x},t)] \cdot \frac{\vec{r}}{r}$$

 η_d : Kolmogorov dissipation scale;

L: large length scale at which energy is injected into the system.

- Experiments favour multiscaling: ζ_p a nonlinear, convex monotone increasing function of p.
- Simple-scaling prediction of Kolmogorov: $\zeta_p^{K41} = p/3$.

Introduction : Frames of Reference

Eulerian :

The Navier-Stokes equation is written in terms of the Eulerian velocity \mathbf{u} at position \mathbf{x} and time t. In the Eulerian case the frame of reference is fixed with respect to the fluid;

Lagrangian :

Frame of reference fixed to a fluid *particle*; this fictitious particle moves with the flow and its path is known as a Lagrangian trajectory.

$$\mathbf{v} = \left(rac{d\mathbf{R}}{dt}
ight)_{\mathbf{r_0}};$$

Quasi-Lagrangian :

It uses the following transformation for an Eulerian field $\psi(\mathbf{r}, t)$: $\hat{\psi}(\mathbf{r}, t) = \psi(\mathbf{r} + \mathbf{P}(t, \mathbf{r}, 0) + \mathbf{I})$

$$\hat{\psi}(\mathbf{r},t) \equiv \psi[\mathbf{r} + \mathbf{R}(t;\mathbf{r_0},0),t].$$

Time-Dependent Structure Functions

The order-p, time-dependent longitudinal structure function:

 $\mathcal{F}_{\rho}(r, \{t_1, \ldots, t_{\rho}\}) \equiv \langle [\delta u_{\parallel}(\vec{x}, t_1, r) \ldots \delta u_{\parallel}(\vec{x}, t_{\rho}, r)] \rangle$

For simplicity we consider $t_1 = t$ and $t_2 = \ldots = t_p = 0$.

 Given F(r, t), different ways of extracting time scales yield different exponents that are defined via dynamic-multiscaling ansätze:

$$\mathcal{T}_p(r) \sim r^{z_p}.$$

The GOY Shell Model

The evolution equation for the GOY shell model takes the form,

$$\left[\frac{d}{dt} + \nu k_n^2\right]u_n = i(a_n u_{n+1} u_{n+2} + b_n u_{n-1} u_{n+1} + c_n u_{n-1} u_{n-2})^* + f_n.$$

► In the shell model equation,

•
$$k_n = k_0 2^n$$
, where $k_0 = 1/16$;

•
$$a_n = k_n$$
, $b_n = -\delta k_{n-1}$, $c_n = -(1 - \delta)k_{n-2}$, where $\delta = 1/2$.

Simulation Details

- We use the slaved Adams-Bashforth scheme to integrate the GOY shell model equation with 22 shells.
- We use $\delta t = 10^{-4}$ and $\nu = 10^{-7}$.
- For statistically steady turbulence, we use external forcing to drive the system.
- We study decaying turbulence by using two kinds of initial conditions:
 - 1. a random configuration where all the energy is concentrated at large length scales;
 - 2. a configuration obtained from a statistically steady turbulent state.

Details: Forced Turbulence

- We start from an initial condition where all the energy is concentrated in the large length scales, i.e., v_n⁰ = k_n^{-1/3}e^{iθ_n} (for n = 1,2) and v_n⁰ = 0 (for n = 3 to 22), with θ_n a random phase angle distributed uniformly between 0 and 2π.
- ► The system is then driven to a statistically steady state with a force $f_n = \delta_{n,1}(i + i) \times 5 \times 10^{-3}$.
- All measurements are made once the system reaches a statistically steady state.

Details: Decaying Turbulence

- ► For the first initial condition we use $v_n^0 = k_n^{1/2} e^{i\theta_n}$ (for n = 1,2) and $v_n^0 = k_n^{1/2} e^{-k_n^2} e^{i\theta_n}$ (for n = 3 to 22) with θ_n a random phase angle distributed uniformly between 0 and 2π .
- ► For the second initial condition, we first achieve a forced statistically steady state, with $f_n = \delta_{n,1}(i+i) \times 5 \times 10^{-3}$. The force is then switched off at some time origin t_0 and the system is allowed to decay freely.
- Our exponents are independent of the kind of initial condition we choose.

Error Estimates (GOY)

- Static solution exhibit a 3-cycle in the shell index *n*.
- Obtain 50 different values of each of the exponents from 50 independent simulations.
- Time-averaging is done over a time T_{av} = 10⁵ × τ_L to obtain the results for statistically steady state quantities. For decaying turbulence, we average over 20000 statistically independent initial configurations.
- The means of these 50 values for each of the dynamic-multiscaling exponents are shown in figure and the standard deviation yields error.
- This averaging is another way of removing the effects of the 3-cycle mentioned above.

Principal Results: Fluid Turbulence

- ► Simple dynamic scaling for Eulerian-velocity structure functions (z^E_p = 1).
- Dynamic multiscaling is obtained for Lagrangian or Quasi-Lagrangian structure functions.
- ► Dynamic multiscaling exponents z_p depend on how T_p(r) is extracted.
- z_p is related to the equal-time exponents via bridge relations.
- Universality of dynamic exponents: the same for decaying and statistically steady turbulence.

Integral Time Scale

From the longitudinal, time-dependent, order-p structure functions, the order-p, degree-M, integral time scale is defined as,

$$\mathcal{T}_{
ho,M}^{\prime}(r)\equiv\left[rac{1}{\mathcal{S}_{
ho}(r)}\int_{0}^{\infty}\mathcal{F}_{
ho}(r,t)t^{(M-1)}dt
ight]^{(1/M)}$$

• The integral dynamic multiscaling exponent $z_{p,M}^{l}$ is defined as

$$\mathcal{T}^{I}_{\rho,M}(r) \sim r^{z^{I}_{\rho,M}}.$$

Derivative Time Scale

 Similarly, the order-p, degree-M derivative time scale is defined as

$$\mathcal{T}_{\rho,M}^{D}(r) \equiv \left[\frac{1}{\mathcal{S}_{\rho}(r)} \frac{\partial^{M} \mathcal{F}_{\rho}(r,t)}{\partial t^{M}}\right]^{(-1/M)}$$

• The derivative dynamic multiscaling exponent $z_{p,M}^D$ is defined as $\tau D(\omega) = r^{Z_{p,M}^D}$

$$\mathcal{T}^{D}_{p,M}(r) \sim r^{z^{D}_{p,M}}.$$

Theoretical Prediction

The multifractal model predicts the following bridge relations:

$$z'_{p,M} = 1 + rac{[\zeta_{p-M} - \zeta_p]}{M};$$

 $z^D_{p,M} = 1 + rac{[\zeta_p - \zeta_{p+M}]}{M}.$

Extending the Frisch-Parisi Multifractal Model

Dynamic Structure Functions

$$\mathcal{F}_{p}(\ell,t) \propto \int_{\mathcal{I}} d\mu(h)(rac{\ell}{L})^{\mathcal{Z}(h)} \mathcal{G}^{p,h}(rac{t}{ au_{p,h}}),$$

where $\mathcal{G}^{p,h}(\frac{t}{\tau_{p,h}})$ has a characteristic decay time $\tau_{p,h} \sim \ell/\delta v(\ell) \sim \ell^{1-h}$, and $\mathcal{G}^{p,h}(0) = 1$. If $\int_0^\infty t^{(M-1)} \mathcal{G}^{p,h} dt$ exists, then the order-p, degree-M, integral time scale is

$$\mathcal{T}_{
ho,M}^{\prime}(\ell)\equiv\left[rac{1}{\mathcal{S}_{
ho}(\ell)}\int_{0}^{\infty}\mathcal{F}_{
ho}(\ell,t)t^{(M-1)}dt
ight]^{(1/M)}.$$

* V.S. L'vov, E. Podivilov, and I. Procaccia, Phys. Rev. E **55**,7030 (1997).

Multifractal Model

$$\mathcal{T}_{p,1}^{I}(\ell) \equiv \left[\frac{1}{\mathcal{S}_{p}(\ell)} \int_{0}^{\infty} \mathcal{F}_{p}(\ell, t) dt\right]^{(1/M)}$$

$$\propto \left[\frac{1}{\mathcal{S}_{p}(\ell)} \int_{\mathcal{I}} d\mu(h) (\frac{\ell}{L})^{\mathcal{Z}(h)} \int_{0}^{\infty} dt \mathcal{G}^{p,h}(\frac{t}{\tau_{p,h}})\right]$$

$$\propto \left[\frac{1}{\mathcal{S}_{p}(\ell)} \int_{\mathcal{I}} d\mu(h) (\frac{\ell}{L})^{ph+3-D(h)} \ell^{1-h}\right]$$

In the last step, we have used :

 $au_{p,h} \sim \ell/\delta v(\ell) \sim \ell^{1-h}$

Multifractal Model

Corresponding Bridge Relations :

$$z_{p,1}^{I} = 1 + [\zeta_{p-1} - \zeta_{p}],$$

$$z_{p,2}^D = 1 + [\zeta_p - \zeta_{p+2}]/2.$$

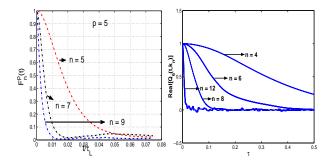
Bridge relations reduce to z_p^{K41} = 2/3 if we assume K41 scaling for the equal-time structure functions.

Numerical studies of dynamic multiscaling

- L. Biferale, G. Bofetta, A. Celani, and F. Toschi, Physica D 127 187 (1999); this study uses an exit-time method.
- Our group has concentrated on an elucidation of dynamic multiscaling by using time-dependent structure functions and (a) shell models and
 (b) the two-dimensional Navier-Stokes equation with Ekman friction.

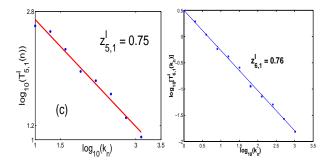
In the following slides we give an overview of our results without technical details.

Results



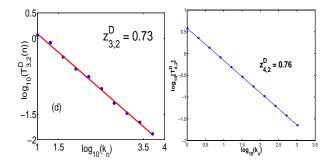
Plots of order-*p* structure functions *vs* the dimensionless time for various shells for statistically steady (left) and decaying (right) turbulence.

Integral Time Scales



Log-log plots of integral times for statistically steady (left) and decaying (right) turbulence for order-p structure functions; the slopes of these graphs yield $z_{p,1}^{l}$. The integration is carried out over time 0 to t_u , where we choose t_u such that $F_p(n, t_u)$ (or $Q_p(n, t_u)$) = α for all n and p.

Derivative Time Scales



The analogue of the previous figure for derivative time scales yields $z_{p,1}^D$. We use a centered, sixth-order, finite-difference scheme by extending $F_p(n,t)$ (or $Q_p(n,t)$) to negative t via $F_p(n,-t)$ (or $Q_p(n,-t)$) = $F_p(n,t)$ (or $Q_p(n,t)$) to obtain the derivative time scales.

Passive Scalars

- We use two different kinds of velocity fields in the advection-diffusion equation for both statistically steady and decaying turbulence:
 - Model A : The Kraichnan ensemble where each component of u is a zero-mean, delta-correlated Gaussian random variable.
 - Model B : Velocities from the GOY shell model.

Principal Results: Passive-Scalars

- Dynamic multiscaling is obtained only if the advecting velocity is intermittent.
- Simple dynamic scaling is obtained for a simple version of the passive-scalar problem (Kraichnan), in which the advecting velocity field is Gaussian, even though equal-time structure functions display multiscaling in this model.
- For intermittent velocity fields, different time scales can be extracted.
- z_p related to ζ_p through bridge relations.
- Universality: Dynamic exponents for decaying and statistically steady passive-scalar turbulence are equal.

Model A

The covariance of the field is

$$< u_i(\mathbf{x},t)u_j(\mathbf{x}+\mathbf{r},t')>=2D_{ij}\delta(t-t')$$

where the Fourier Transform of D_{ij} has the form

$$ilde{D}_{ij}(\mathbf{q}) \propto ig(q^2+rac{1}{L^2}ig)^{-(d+\xi)/2}e^{-\eta q^2}ig[\delta_{ij}-rac{q_iq_j}{q^2}ig].$$

In the limits $L\longrightarrow\infty$ and $\eta\longrightarrow$ 0, D_{ij} in real space is

$$D_{ij}(\mathbf{r}) = D^0 \delta_{ij} - \frac{1}{2} d_{ij}(\mathbf{r}))$$

where,

$$d_{ij} = D_1 r^{\xi} \left[(d-1+\xi)\delta_{ij} - \xi \frac{r_i r_j}{r^2} \right]$$

Passive-scalar shell models

$$\begin{bmatrix} \frac{d}{dt} + \kappa k_n^2 \end{bmatrix} \theta_n = i \begin{bmatrix} a_n (\theta_{n+1}^* u_{n-1}^* - \theta_{n-1}^* u_{n+1}^*) + b_n (\theta_{n-1}^* u_{n-2}^* + \theta_{n-2}^* u_{n-1}) \\ + c_n (\theta_{n+2}^* u_{n+1} + \theta_{n+1}^* u_{n+2}^*) \end{bmatrix} + f_n,$$

where the asterisks denote complex conjugation, $a_n = k_n/2$, $b_n = -k_{n-1}/2$, and $c_n = k_{n+1}/2$; f_n is an additive force that is used to drive the system to a steady state; the boundary conditions are $u_{-1} = u_0 = \theta_{-1} = \theta_0 = 0$; $u_{N+1} = u_{N+2} = \theta_{N+1} = \theta_{N+2} = 0$.

- For the Kraichnan model, the advecting velocity variables are taken to be zero-mean, white-in-time, Gaussian random complex variables with covariance $\langle u_n(t)u_m^*(t')\rangle = C_2 k_n^{-\xi} \delta_{mn} \delta(t-t').$
- ► For a "turbulent" passive-scalar field, the advecting velocity field is a solution of the GOY shell model.

Model A

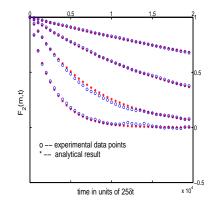
This model shows multiscaling for equal-time passive-scalar structure functions for $0 < \xi < 2$.

Dynamic Multiscaling in Passive-Scalars

Multifractal model predicts:

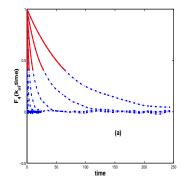
- $\blacktriangleright \ z^D_{p,M} = 1 \zeta^u_M / M$
- $z_{p,M}^{I} = 1 |\zeta_{-M}^{u}|/M$
- Breakdown of simple scaling.
- Does structure functions with negative exponents exists?

Analytical and Numerical Results

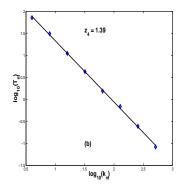


A comparison of our numerical and analytical results for model A second-order structure function in decaying turbulence.

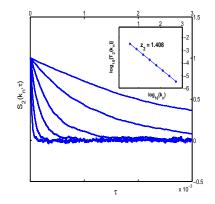
- Analytical work shows that for Model A the time-dependent structure functions decay exponentially.
- ► A log-log plot of the characteristic decay time vs the wave vectors yield the dynamic exponent z_p.
- ► It is shown analytically that for all order-*p* time-dependent structure functions, $z_p = 2 \xi$.
- Our numerics support this prediction for decaying passive-scalar fields.



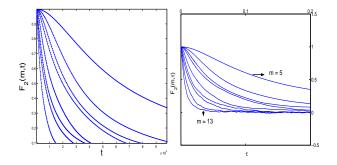
A plot of the fourth-order structure function ($\xi = 0.6$) vs time for statistically steady turbulence. The scaling exponent is extracted from the decay constant of the curves.



The slope of a log-log plot of the decay constant *vs* the wave-vector yields the dynamic scaling exponent for the fourth-order structure function.

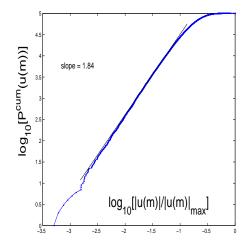


A plot of the second-order dynamic structure function for decaying turbulence. The slope of a log-log plot (inset) of the decay time *vs* the wave-vector yields the dynamic exponent .



Plots of the second-order time-dependent structure function vs the dimensionless time for statistically steady (left) and decaying turbulence (right).

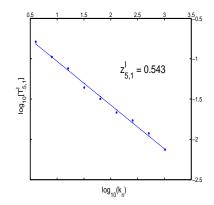
Cumulative pdf for u_m



Negative Exponents

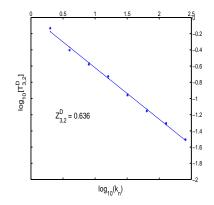
- ► For small $|u_m|$, $P^{cum}[|u_m|] \sim |u_m|^{1.8}$.
- $P[|u_m|] \sim |u_m|^{0.8}$.
- $S_{-1}(m) \equiv \int P[x] \frac{1}{x} dx \sim \int x^{-0.2} dx$ exists.
- But $S_p(m)$ for $p \approx -1.8$ does not.
- $T_{p,M}^{I}$ for M > 2 does not exist.
- Measurement of a static quantity (P(x)) gives us information about existence of a dynamic quantity T^I_{p,M}.

Model B: Integral Time Scale



A log-log plot of the integral time scale vs the wave-vector in decaying turbulence. The linear fit gives us the scaling exponent $z_{p,M}^{l}$.

Derivative Time Scale



A log-log plot of the derivative time scale vs the wave-vector in decaying turbulence. The linear fit gives us the scaling exponent $Z_{p,M}^D$.

Exponents for dynamic multiscaling in shell models

order(p)	ζ_p^u	$z_{p,1}^{I,u}$ [Theory]	$z_{p,1}^{I,u}$	$z_{p,2}^{D,u}$ [Theory]	$z_{p,2}^{D,u}$
1	0.379 ± 0.008	0.621 ± 0.008	0.61 ± 0.03	0.68 ± 0.01	0.699 ± 0.00
2	0.711 ± 0.002	0.66 ± 0.01	0.68 ± 0.01	0.716 ± 0.008	0.723 ± 0.00
3	1.007 ± 0.003	0.704 ± 0.005	0.711 ± 0.001	0.74 ± 0.01	0.752 ± 0.00
4	1.279 ± 0.006	0.728 ± 0.009	0.734 ± 0.002	0.76 ± 0.02	0.76 ± 0.01
5	1.525 ± 0.009	0.75 ± 0.02	0.755 ± 0.002	0.77 ± 0.02	0.77 ± 0.02
6	1.74 ± 0.01	0.78 ± 0.02	0.78 ± 0.03	0.77 ± 0.03	0.78 ± 0.02

order(p)	ζ_p^{θ}	$z_{p,1}^{I,\theta}$	$z_{p,2}^{D,\theta}$
1	0.342 ± 0.002	0.522 ± 0.002	0.632 ± 0.003
2	0.634 ± 0.003	0.531 ± 0.004	0.647 ± 0.003
3	0.873 ± 0.003	0.553 ± 0.006	0.646 ± 0.003
4	1.072 ± 0.004	0.563 ± 0.003	0.642 ± 0.005
5	1.245 ± 0.004	0.562 ± 0.006	0.643 ± 0.006
6	1.370 ± 0.006	0.576 ± 0.006	0.640 ± 0.005

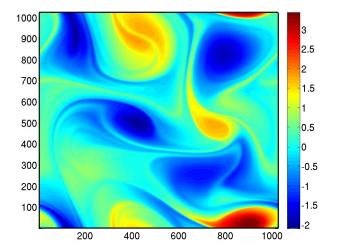
Dynamic Multiscaling in Two-dimensional Fluid Turbulence

Multiscaling and quasi-Lagrangian Structure Functions

- Multiscaling in equal-time, Eulerian vorticity structure functions.
- Dynamic-multiscaling in time-dependent vorticity structure functions for Eulerian and quasi-Lagrangian fields.
- Tracking a single particle in a 2D flow with Ekman friction to generate quasi-Lagrangian fields.

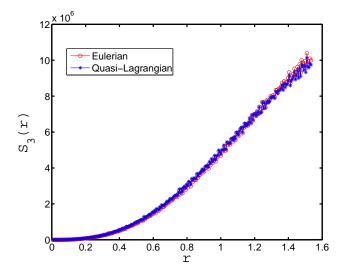
Movie

Steady State quasi-Lagrangian Vorticity Field



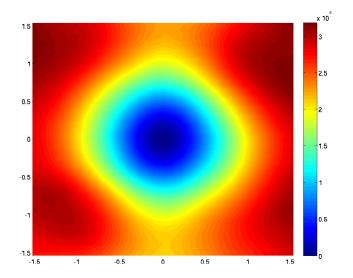
A pseudocolor plot of the quasi-Lagrangian vorticity field in the statistically steady state.

Equal-time Structure Functions



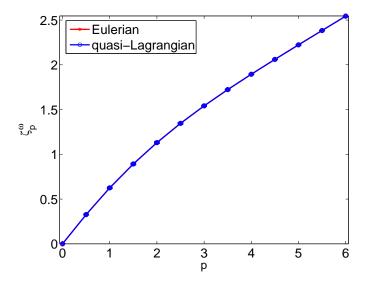
The third order structure function for the Eulerian (red) and quasi-Lagrangian (blue) fields.

Equal-time Structure Functions : quasi-Lagrangian



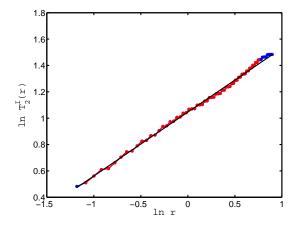
The isotropic sector for the third order structure function for the quasi-Lagrangian field.

Equal-time Exponents for Vorticity Structure Functions



The equal-time exponents ζ_p , for the vorticity field, versus p for Eulerian (in red) and quasi-Lagrangian (in blue) fields.

Time-dependent Structure Functions

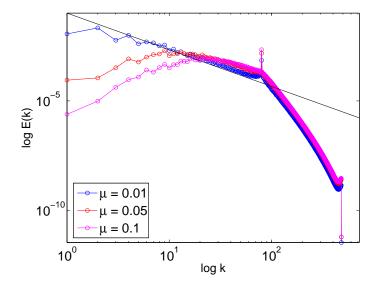


A log-log plot of $T'_{2,1}$ versus the separation r; the data points are shown by open red circles and the straight black line shows the line of best fit in the inertial range.

Exponents from 2D DNS

order(p)	$\zeta_p^{ m qL}$	$z_{p,1}^{I,qL}$ [Theory]	$z_{p,1}^{I,qL}$	$z_{p,2}^{D,qL}$ [Theory]	$z_{p,2}^{D,qL}$
1	0.625 ± 0.003	0.375 ± 0.007	0.37 ± 0.02	0.541 ± 0.008	0.53 ± 0.02
2	1.131 ± 0.005	0.49 ± 0.02	0.48 ± 0.01	0.618 ± 0.009	0.62 ± 0.2
3	1.541 ± 0.005	0.58 ± 0.01	0.57 ± 0.01	0.66 ± 0.01	0.67 ± 0.01
4	1.895 ± 0.004	0.65 ± 0.01	0.65 ± 0.01	0.675 ± 0.008	0.66 ± 0.03
5	2.222 ± 0.008	0.67 ± 0.01	0.65 ± 0.02	0.70 ± 0.01	0.70 ± 0.02
6	2.544 ± 0.004	0.68 ± 0.01	0.66 ± 0.02	0.71 ± 0.02	0.71 ± 0.03

Effect of Ekman Friction



A log-log plot of the energy spectrum versus the wavevector k for various values of μ .

Conclusions

- ► We have checked that bridge relations hold for the vorticity structure functions in the forward cascade in 2D turbulence.
- We have also studied time-dependent structure functions in a shell model for MHD turbulence (with S.S. Ray and G. Sahoo); but here it is not clear how to obtain bridge relations.