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Plunger Shaker

Laboratory setup

Plunger Shaker

direct wave excitation,
spatially localized

parametric excitation,
spatially isotropic
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Laboratory setup

Waves excited parametrically in vertically 
shaken container, or using conical plunger 
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Parametric excitation of surface waves

Faraday waves are excited in shaker experiments using fluid tanks of different shapes 
(round, square), depth (~30mm) , sizes (100-300mm) in the frequency range 
40Hz < fs < 4kHz.
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Measurement techniques

Laser reflection
Reflected laser light intensity 
proportional to gradient of the 

surface elevation

Surface imaging using thin 
laser sheet

Fluorescent dye used to visualize 
perturbed surface

Laser transmission 
through diffusive liquid

Transmitted laser light intensity 
proportional to the surface
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Experimental tests of weak turbulence theory
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Assumptions in the weak turbulence theory

1. Capillary wave dispersion relation 321  1. Capillary wave dispersion relation 
allows three-wave interactions
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2. Waves have random 
phases 3kk

 phases

3. Infinite domain



6/176/13/22/1PE 6/176/13/22/1~   PEWTT predicts
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Assumptions in the weak turbulence theory
1 Capillary wave dispersion relation1. Capillary wave dispersion relation 

allows three-wave interactions

low forcing
hi h f i

No 3-wave interactions 
possible in such spectra

M t hi l f k d

higher forcing
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Matching rules for k and 
 cannot be satisfied 
simultaneously
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Assumptions in the weak turbulence theory
2 Wave have random phases2. Wave have random phases

Bicoherence:
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Assumptions in the weak turbulence theory
2 Wave have random phases2. Wave have random phases

Bicoherence:
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Random phases?
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Transition to turbulence?

low-ish forcing strong forcingg g
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Turbulence formation
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Turbulence formation
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Comparison with WTT
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Transition to turbulence

Which mechanism(s)

• Broaden wave spectra 

Which mechanism(s)

• Generate spectral continuum to allow 3-wave 

interactions?interactions?

• Randomize wave phases?

• Detach wave field from the boundary (infinite domain)?• Detach wave field from the boundary (infinite domain)?
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Development of modulation instability

At modest damping (distilled water) parametrically excited waves are unstable 
to small perturbations of the wave amplitude. 
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Growing amplitude modulation is
signature of modulation instability
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Development of modulation instability

movie
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Punzmann, Shats, Xia, Phys. Rev. Lett. (2009)

Xia, Shats, Punzmann, EPL (2010) )sech(~)( btts
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Modulation instability
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Modulationally unstable waves described by nonlinear Schrodinger equation

Modulation instability and envelope solitons

Modulationally unstable waves described by nonlinear Schrodinger equation
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Zakharov Shabat 1970
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One exact solution of the NLS is the hyperbolic secant envelope soliton
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Zakharov–Shabat, 1970

Modulation instability found in plasma (Langmuir waves, drift waves), nonlinear 
optics (optical fibers), gravity surface waves (Benjamin-Feir instability)

Modulation instability in magnetically confined plasma:

The onset of the low-frequency zonal flow coincides with the 
strong amplitude modulation of the parent wavestrong amplitude modulation of the parent wave. 
Morlet wavelet analysis

M. Shats and W. Solomon, New J. Phys. (2002)
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Nonlinear spectral broadening
Capillary wavesCapillary waves

Punzmann, Shats, Xia, Phys. Rev. Lett. (2009)
Video imaging

Laser reflectionLaser reflection
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“Triangular shape” in lin-log spectra 
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Nonlinear spectral broadening

Spin waves in magneticsSpin waves in magnetics
Krutsenko, L’vov, Melkov, Sov. Phys. JETP 48, 561 (1978)].

Second so nd a es in s perfl id He4Second sound waves in superfluid He4
Rinberg, Cherepanov, Steinberg, Phys. Rev. Lett. 

(1997)
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Nonlinear spectral broadening

Supercontinuum generation from CW pumpingSupercontinuum generation  from CW pumping
Kutz et al., Opt. Express 16, 3989 (2005)

Supercontinuum in fibers 
N. Korneev et al., Opt. Express 16, 2636 (2008)
The spectrum of a sum of solitons according to 
Zakharov-Shabat statistics of soliton sea (red line), and 
the result of numerical simulation for breakup of a long 
pulse with initially small white noise (blue circles).
Approximately 18 solitons are formed It is seen that theApproximately 18 solitons are formed. It is seen, that the 
high-frequency tail is well described by a spectrum 
resulting from the superposition of independent solitons.
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Nonlinear spectral broadening

Raman fiber lasers (RFLs)
Babin et al., PHYSICAL REVIEW A 77, 033803 (2008)

Stokes (red shifted)
power p

FBGFBG

Pumping wavelength = 1365 nm;
Stokes wavelength = 1455 nm 
Spectrum measured at point C2; p p ;
Stokes power 0.6, 265, and 714 mW for L=6.6 km.
SMH = single mode fiber
FBG = fiber Bragg gratings

Stokes line
spectrum
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Rogue waves in the ocean and elsewhere

Draupner platform (1995)Draupner platform (1995) 

2007

A Rogue wave is characterized by  steep wave front (“a wall of water”)
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Capillary rogue waves
wave

5

wave 
height Wave crest height of this 

extreme event exceeds
5 times standard5 times standard 
deviation of background
wave field.

Rogue wave isRogue wave is 
characterized
by almost 
vertical wave front.

Shats, Punzmann, Xia, Phys. Rev. Lett. (2010)
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Droplet generation by rogue waves

Wave visualization

Droplet formation
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Probability of capillary rogue waves
Video imaging Laser transmission

increased forcing

Video imaging Laser transmission
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iwith exponential
tails above a 
critical threshold

> 1 2 R >~ 1.2 Rogue wave 
probability
c/ > 5 is 1-2 orders of 
magnitude higher thanmagnitude higher than 
expected from the
exponential trend of the 
wave background
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Evidence of 4-wave interactions

The degree of the four-wave coupling in the surface wave spectrum 
can be characterized by the tricoherence (= normalized trispectrum)

evidence of strong10 2

coherent phase
evidence of strong 
four-wave interactions10 2  t

random phase 4321  random phase
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four-wave interaction process is
key ingredient of modulation instability
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Random phases in 3-wave interactions
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Finite container size effects

Autocorrelation function0.125s

0.250s

forcing
0.625s

Order-disorder transition

1 Tufillaro, Ramshankar, Gollub
Phys. Rev. Lett. 1989

12

3
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Conclusions

• Modulation instability found in capillary waves

• MI is responsible for breaking continuous waves into envelope solitons

MI l d t t l b d i f h i h t f ti• MI leads to spectral broadening of wave harmonics - sech-spectra formation

• MI development correlated with increased probability of capillary rogue  waves

• MI is responsible for order-disorder transition, detachment of wave field from 

containercontainer

• MI responsible for phase randomization in 3-wave interactions

• MI provides conditions for transition to turbulence in parametrically-driven waves
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