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Energy spectrum in fully developed turbulence
Phenomenology of turbulence Kolmogorov 1941:
−5/3 power-law for the energy spectrum over the inertial range;

It is a common criterium for the production of a fully developed
turbulent field to verify such a scaling (e.g. Frisch, 1995; Sreeni-
vasan & Antonia, ARFM, 1997; Kraichnan, Phys. Fluids, 1967).

(left) Evangelinos & Karniadakis, JFM 1999. (right) Champagne, JFM 1978.
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Energy spectrum and linear stability analysis

We consider a collection of stable and unstable perturbation in
their asymptotic state

To understand how spectral representation can effectively highlight
the nonlinear interaction among different scales;
To quantify the degree of generality on the base of the value of the
exponent of the inertial range;

The set of small 3D perturbations:
Constitutes a system of multiple spatial and temporal scales;
Includes all the processes of the perturbative Navier-Stokes equa-
tions (linearized convective transport, molecular diffusion, linearized
vortical stretching);
Leaves aside the nonlinear interaction among the different scales;

The perturbative evolution is ruled out by the initial-value prob-
lem associated to the Navier-Stokes linearized formulation.
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Spectral analysis through initial-value problem

We determine the exponent of the inertial range of arbitrary
longitudinal and transversal perturbations acting on a typical
shear flow, i.e. the bluff-body wake:

Base flow approximated through 2D asymptotic Navier-Stokes ex-
pansions (Tordella & Belan, Phys. Fluids, 2003; Tordella & Scar-
soglio, Phys. Lett. A, 2009) ⇒ (U(x , y ;Re),V (x , y ;Re));
Recent set of solutions yielded by the initial-value problem applied
to a plane bluff-body wake (Scarsoglio et al., Stud. Appl. Math.,
2009; Scarsoglio et al., Phys. Rev. E, 2010);

Variety of the transient linear dynamics ⇒ Understand how the
energy spectrum behaves and compare the decay exponent to
that of the corresponding developed turbulent state:

The difference is large ⇒ quantitative measure of the nonlinear in-
teraction in spectral terms;
The difference is small ⇒ higher degree of universality on the value
of the exponent of the inertial range, not necessarily associated to
the nonlinear interaction.

UCSB D. Tordella, F. De Santi,S. Scarsoglio Energy spectrum in linearized systems



Introduction
Initial-value problem formulation

Exploratory analysis of the transient dynamics
Energy spectrum

Conclusions

Motivation and general aspects

Spectral analysis through initial-value problem

We determine the exponent of the inertial range of arbitrary
longitudinal and transversal perturbations acting on a typical
shear flow, i.e. the bluff-body wake:

Base flow approximated through 2D asymptotic Navier-Stokes ex-
pansions (Tordella & Belan, Phys. Fluids, 2003; Tordella & Scar-
soglio, Phys. Lett. A, 2009) ⇒ (U(x , y ;Re),V (x , y ;Re));

Recent set of solutions yielded by the initial-value problem applied
to a plane bluff-body wake (Scarsoglio et al., Stud. Appl. Math.,
2009; Scarsoglio et al., Phys. Rev. E, 2010);

Variety of the transient linear dynamics ⇒ Understand how the
energy spectrum behaves and compare the decay exponent to
that of the corresponding developed turbulent state:

The difference is large ⇒ quantitative measure of the nonlinear in-
teraction in spectral terms;
The difference is small ⇒ higher degree of universality on the value
of the exponent of the inertial range, not necessarily associated to
the nonlinear interaction.

UCSB D. Tordella, F. De Santi,S. Scarsoglio Energy spectrum in linearized systems



Introduction
Initial-value problem formulation

Exploratory analysis of the transient dynamics
Energy spectrum

Conclusions

Motivation and general aspects

Spectral analysis through initial-value problem

We determine the exponent of the inertial range of arbitrary
longitudinal and transversal perturbations acting on a typical
shear flow, i.e. the bluff-body wake:

Base flow approximated through 2D asymptotic Navier-Stokes ex-
pansions (Tordella & Belan, Phys. Fluids, 2003; Tordella & Scar-
soglio, Phys. Lett. A, 2009) ⇒ (U(x , y ;Re),V (x , y ;Re));
Recent set of solutions yielded by the initial-value problem applied
to a plane bluff-body wake (Scarsoglio et al., Stud. Appl. Math.,
2009; Scarsoglio et al., Phys. Rev. E, 2010);

Variety of the transient linear dynamics ⇒ Understand how the
energy spectrum behaves and compare the decay exponent to
that of the corresponding developed turbulent state:

The difference is large ⇒ quantitative measure of the nonlinear in-
teraction in spectral terms;
The difference is small ⇒ higher degree of universality on the value
of the exponent of the inertial range, not necessarily associated to
the nonlinear interaction.

UCSB D. Tordella, F. De Santi,S. Scarsoglio Energy spectrum in linearized systems



Introduction
Initial-value problem formulation

Exploratory analysis of the transient dynamics
Energy spectrum

Conclusions

Motivation and general aspects

Spectral analysis through initial-value problem

We determine the exponent of the inertial range of arbitrary
longitudinal and transversal perturbations acting on a typical
shear flow, i.e. the bluff-body wake:

Base flow approximated through 2D asymptotic Navier-Stokes ex-
pansions (Tordella & Belan, Phys. Fluids, 2003; Tordella & Scar-
soglio, Phys. Lett. A, 2009) ⇒ (U(x , y ;Re),V (x , y ;Re));
Recent set of solutions yielded by the initial-value problem applied
to a plane bluff-body wake (Scarsoglio et al., Stud. Appl. Math.,
2009; Scarsoglio et al., Phys. Rev. E, 2010);

Variety of the transient linear dynamics ⇒ Understand how the
energy spectrum behaves and compare the decay exponent to
that of the corresponding developed turbulent state:

The difference is large ⇒ quantitative measure of the nonlinear in-
teraction in spectral terms;
The difference is small ⇒ higher degree of universality on the value
of the exponent of the inertial range, not necessarily associated to
the nonlinear interaction.

UCSB D. Tordella, F. De Santi,S. Scarsoglio Energy spectrum in linearized systems



Introduction
Initial-value problem formulation

Exploratory analysis of the transient dynamics
Energy spectrum

Conclusions

Motivation and general aspects

Spectral analysis through initial-value problem

We determine the exponent of the inertial range of arbitrary
longitudinal and transversal perturbations acting on a typical
shear flow, i.e. the bluff-body wake:

Base flow approximated through 2D asymptotic Navier-Stokes ex-
pansions (Tordella & Belan, Phys. Fluids, 2003; Tordella & Scar-
soglio, Phys. Lett. A, 2009) ⇒ (U(x , y ;Re),V (x , y ;Re));
Recent set of solutions yielded by the initial-value problem applied
to a plane bluff-body wake (Scarsoglio et al., Stud. Appl. Math.,
2009; Scarsoglio et al., Phys. Rev. E, 2010);

Variety of the transient linear dynamics ⇒ Understand how the
energy spectrum behaves and compare the decay exponent to
that of the corresponding developed turbulent state:

The difference is large ⇒ quantitative measure of the nonlinear in-
teraction in spectral terms;

The difference is small ⇒ higher degree of universality on the value
of the exponent of the inertial range, not necessarily associated to
the nonlinear interaction.

UCSB D. Tordella, F. De Santi,S. Scarsoglio Energy spectrum in linearized systems



Introduction
Initial-value problem formulation

Exploratory analysis of the transient dynamics
Energy spectrum

Conclusions

Motivation and general aspects

Spectral analysis through initial-value problem

We determine the exponent of the inertial range of arbitrary
longitudinal and transversal perturbations acting on a typical
shear flow, i.e. the bluff-body wake:

Base flow approximated through 2D asymptotic Navier-Stokes ex-
pansions (Tordella & Belan, Phys. Fluids, 2003; Tordella & Scar-
soglio, Phys. Lett. A, 2009) ⇒ (U(x , y ;Re),V (x , y ;Re));
Recent set of solutions yielded by the initial-value problem applied
to a plane bluff-body wake (Scarsoglio et al., Stud. Appl. Math.,
2009; Scarsoglio et al., Phys. Rev. E, 2010);

Variety of the transient linear dynamics ⇒ Understand how the
energy spectrum behaves and compare the decay exponent to
that of the corresponding developed turbulent state:

The difference is large ⇒ quantitative measure of the nonlinear in-
teraction in spectral terms;
The difference is small ⇒ higher degree of universality on the value
of the exponent of the inertial range, not necessarily associated to
the nonlinear interaction.

UCSB D. Tordella, F. De Santi,S. Scarsoglio Energy spectrum in linearized systems



Introduction
Initial-value problem formulation

Exploratory analysis of the transient dynamics
Energy spectrum

Conclusions

Mathematical framework
Measure of the growth

Perturbation scheme

Linear three-dimensional perturbative equations in terms of veloc-
ity and vorticity (Criminale & Drazin, Stud. Appl. Math., 1990);

Base flow parametric in x and Re⇒ U(y ; x0,Re);
Laplace-Fourier transform in x and z directions, α complex, γ real.
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Measure of the growth

Perturbative equations

Perturbative linearized system:

∂2v̂
∂y2

− (k2 − α2
i + 2iαrαi )v̂ = Γ̂

∂Γ̂

∂t
= (iαr − αi )(

d2U
dy2

v̂ − UΓ̂) +
1

Re
[
∂2Γ̂

∂y2
− (k2 − α2

i + 2iαrαi )Γ̂]

∂ω̂y

∂t
= −(iαr − αi )Uω̂y − iγ

dU
dy

v̂ +
1

Re
[
∂2ω̂y

∂y2
− (k2 − α2

i + 2iαrαi )ω̂y ]

The transversal velocity and vorticity components are v̂ and ω̂y

respectively, Γ̂ is defined as Γ̃ = ∂x ω̃z − ∂z ω̃x .
Initial conditions:

ω̂y (0, y) = 0;
v̂(0, y) = e−y2

sin(y) or v̂(0, y) = e−y2
cos(y);

Boundary conditions: (û, v̂ , ŵ)→ 0 as y →∞.
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Mathematical framework
Measure of the growth

Perturbation energy

Kinetic energy density e:

e(t ;α, γ) =

∫ +yd

−yd

(|û|2 + |v̂ |2 + |ŵ |2)dy

=
1

|α2 + γ2|

∫ +yd

−yd

(|
∂v̂
∂y
|2 + |α2 + γ2||v̂ |2 + |ω̂y |2)dy

Amplification factor G:

G(t ;α, γ) =
e(t ;α, γ)

e(t = 0;α, γ)
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Dependence parameters
Time normalization

Dependence parameters

The early transient evolution of the perturbations offers very different
scenarios, that are depended by:

wavenumber

obliquity angle
initial condition
wake configuration field
Reynolds number
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Dependence parameters
Time normalization

Transient dynamics example

Fixed Reynolds number and wake configuration filed, the transient
observed in long and short waves with different initial conditions is
very diversified

The amplification factor G, obtained at Re = 100, x0 = 10, with different initial
condition and obliquity angle for a long (on the left) and a short (on the right)
waves
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Dependence parameters
Time normalization

Time normalization

We have different temporal scales associated to the different per-
turbation wavelengths ⇒ A continuous instantaneous normaliza-
tion can be used by defining as t∗ = t

τG
, τG = G(t)

| dG(t)
dt |

The amplification factor G, obtained at Re = 100, x0 = 10, with symmetric
initial condition, φ = 0 as a function of t (on the left) and of t* (on the right)
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Energy spectrum
Asymmetric initial condition case

Stop criterion

The energy spectrum is computed at the asymptotic state, since
it can widely vary during the transient;

The time that perturbations take to get in their asymptotic condi-
tion is defined time such that:

dG(t)/dt = Cs (= 10−4) for stable perturbations;
dG(t)/dt = Cu (= 10+4) for unstable perturbation.

Perturbation energy normalized over the value at t = 0⇒ G(k);

UCSB D. Tordella, F. De Santi,S. Scarsoglio Energy spectrum in linearized systems



Introduction
Initial-value problem formulation

Exploratory analysis of the transient dynamics
Energy spectrum

Conclusions

Energy spectrum
Asymmetric initial condition case

Stop criterion

The energy spectrum is computed at the asymptotic state, since
it can widely vary during the transient;
The time that perturbations take to get in their asymptotic condi-
tion is defined time such that:

dG(t)/dt = Cs (= 10−4) for stable perturbations;
dG(t)/dt = Cu (= 10+4) for unstable perturbation.

Perturbation energy normalized over the value at t = 0⇒ G(k);

UCSB D. Tordella, F. De Santi,S. Scarsoglio Energy spectrum in linearized systems



Introduction
Initial-value problem formulation

Exploratory analysis of the transient dynamics
Energy spectrum

Conclusions

Energy spectrum
Asymmetric initial condition case

Stop criterion

The energy spectrum is computed at the asymptotic state, since
it can widely vary during the transient;
The time that perturbations take to get in their asymptotic condi-
tion is defined time such that:

dG(t)/dt = Cs (= 10−4) for stable perturbations;
dG(t)/dt = Cu (= 10+4) for unstable perturbation.

Perturbation energy normalized over the value at t = 0⇒ G(k);

UCSB D. Tordella, F. De Santi,S. Scarsoglio Energy spectrum in linearized systems



Introduction
Initial-value problem formulation

Exploratory analysis of the transient dynamics
Energy spectrum

Conclusions

Energy spectrum
Asymmetric initial condition case

Stop criterion

The energy spectrum is computed at the asymptotic state, since
it can widely vary during the transient;
The time that perturbations take to get in their asymptotic condi-
tion is defined time such that:

dG(t)/dt = Cs (= 10−4) for stable perturbations;
dG(t)/dt = Cu (= 10+4) for unstable perturbation.

Perturbation energy normalized over the value at t = 0⇒ G(k);

UCSB D. Tordella, F. De Santi,S. Scarsoglio Energy spectrum in linearized systems



Introduction
Initial-value problem formulation

Exploratory analysis of the transient dynamics
Energy spectrum

Conclusions

Energy spectrum
Asymmetric initial condition case

Results

High Reynolds number and intermediate wake configuration

UCSB D. Tordella, F. De Santi,S. Scarsoglio Energy spectrum in linearized systems



Introduction
Initial-value problem formulation

Exploratory analysis of the transient dynamics
Energy spectrum

Conclusions

Energy spectrum
Asymmetric initial condition case

Results

High Reynolds number and far wake configuration

UCSB D. Tordella, F. De Santi,S. Scarsoglio Energy spectrum in linearized systems



Introduction
Initial-value problem formulation

Exploratory analysis of the transient dynamics
Energy spectrum

Conclusions

Energy spectrum
Asymmetric initial condition case

Results

Middle Reynolds number and intermediate wake configuration

UCSB D. Tordella, F. De Santi,S. Scarsoglio Energy spectrum in linearized systems



Introduction
Initial-value problem formulation

Exploratory analysis of the transient dynamics
Energy spectrum

Conclusions

Energy spectrum
Asymmetric initial condition case

Results

Low Reynolds number and intermediate wake configuration

UCSB D. Tordella, F. De Santi,S. Scarsoglio Energy spectrum in linearized systems



Introduction
Initial-value problem formulation

Exploratory analysis of the transient dynamics
Energy spectrum

Conclusions

Energy spectrum
Asymmetric initial condition case

Asymmetric initial condition case

Perturbation with asymmetric initial condition growths in the early
transient are much slower than the symmetric ones

The amplification factor function shows a modulation, which is
very evident in the first part of the transient.
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Two different self similar state are observed

The stop criterion cannot be applied a priori
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The computed slopes differ by up to 2%
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Concluding remarks

Preliminary study of the behaviour of a collection of 3D waves
seen throughout their energy spectrum at the asymptotic state;

The energy of the intermediate range of wavenumbers in the spec-
trum decays with the same exponent observed for fully developed
turbulent flows (−5/3 ), where the nonlinear interaction is consid-
ered dominant;
The spectral power-law scaling of inertial waves is a general dy-
namical property which encompasses the nonlinear interaction;
The −5/3 power-law scaling in the intermediate range seems to
be an intrinsic property of the Navier-Stokes solutions.

Coming next⇒ Temporal observation window of a large number of
small 3D perturbations injected in a statistical way into the system.
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