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distribution of turbulent energy
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An integral scale gradient introduced

in a uniform kinetic energy

distribution can generate:

• an energy gradient

• a highly intermittent layer
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Flow Configuration
Initially uniform turbulent kinetic energy:

E, ℓ1 E, ℓ2 < ℓ1

1-Larger scale turbulence 2-Smaller scale turbulence
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Flow Configuration
Initially uniform turbulent kinetic energy:

E, ℓ1 E, ℓ2 < ℓ1

1-Larger scale turbulence 2-Smaller scale turbulence

Shearless mixing layerETC-12, Marburg, 7-10 September 2009 – p. 4/15



Method

t = 0

–Periodic b.c.

–Temporal decay
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• DNS:

◮ Reλ = 150

◮ parallelepiped
domain,
2π × 2π × 4π

◮ 6002
× 1200 grid

points
◮ Fourier-Galerkin

pseudospectral space
discretization

◮ explicit RK-4 time
integration
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Initial energy spectra
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Turbulent kinetic energy decay

t/τ

E
1(

t)
,E

2(
t)

0 2 4 6
0

0.2

0.4

0.6

0.8

1

E1(t)
E2(t)

Reλ=150, initial scale ratio=2.8

n2=-1.7

n1=-1.1

t/τ

E
1(

t)
,E

2(
t)

0 2 4 6
0

0.2

0.4

0.6

0.8

1

E1(t)
E2(t)

Reλ=150, initial scale ratio=2.1

n1=-1.1

n2=-1.5

t/τ

E
1(

t)
,E

2(
t)

0 2 4 6
0

0.2

0.4

0.6

0.8

1

E1(t)
E2(t)

Reλ=150, initial scale ratio=1.5

n2=-1.3

n1=-1.1

Homogenous turbulence
with smaller scale de-
cays faster
⇒ a kinetic energy gra-
dient is generated

ETC-12, Marburg, 7-10 September 2009 – p. 7/15



Energy Ratio
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Mixing layer thickness ∆(t)
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Kinetic energy gradient
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Mixing layer intermittency
Velocity skewness and kurtosis, component in the
inhomogeneous direction: maximum in the mixing layer
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Intermittency
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Longitudinal derivatives
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Longitudinal derivatives
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Conclusions
Simulations of a flow with an homogenous energy and
an integral scale gradient show:

• an integral scale inhomogeneity generates an
energy gradient

• the decay exponent of turbulent flow with the
same initial energy depends on their integral scale
⇒ the smaller the scale, the faster the decay.

• intermittency can be higher than that generated
by an energy gradient and a uniform scale

• anisotropy and intermittency quickly spread to
small scales.
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Turbulent shearless mixing

Reλ = 150, E1/E2 = 6.6, t/τ = 0.92

E1, `1 E2, `2

Homogeneous region 1 Homogeneous region 2

Mixing layer
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Turbulent shearless mixing

Reλ = 150, E1/E2 = 6.6, t/τ = 6.7

E1, `1 E2, `2

Homogeneous region 1 Homogeneous region 2

Mixing layer
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1-Gradient of energy

Gradient of energy, uniform integral scale
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Mixing layer thickness, E1/E2 = 6.7

x

E
(x

)

0

0.25

0.5

0.75

1

∆(t)

t/τ

∆(
t)

/∆
(0

)

0 2 4 6
1

1.5

2

2.5

3

3.5

Re=150
Re=70
Re=45

∆(t) is the mixing layer thickness, defined from the
kinetic energy distribution, see JFM 2006, ∆ ∼ t0.45.

EC-512, Torino, 26-29 Ottobre 2009 – p. 5/27



Velocity moments, large scale anisotropy
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Velocity moments, large scale intermittency

Reλ = 45, E1/E2 = 6.7, `1/`2 = 1
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Velocity moments, large scale intermittency
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Small scale intermittency

Reλ = 45, E1/E2 = 6.7, `1/`2 = 1
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Small scale intermittency

Reλ = 150, E1/E2 = 6.7, `1/`2 = 1
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2-Concurrent gradients

Concurrent gradients of energy and scale
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Small scale intermittency

Reλ = 45, E1/E2 = 6.7, `1/`2 = 2.1
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3-Opposite gradients

Opposite gradients of energy and integral scale
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Small scale intermittency: higher moments

Reλ = 45, E1/E2 = 6.5, `1/`2 = 0.6
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4-Gradient of integral scale

Gradient of integral scale, initially uniform energy
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Energy ratio

Different decay rates ⇒ kinetic energy does not
remain constant:
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Kinetic energy gradient

Kinetic energy gradient and mixing layer thickness
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Velocity moments, large scale intermittency

Reλ = 150, E1/E2 = 6.7, `1/`2 = 2.8, t/τ = 6.8
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Large scale intermittency

Velocity skewness and kurtosis, component in the
inhomogeneous direction: maximum in the mixing layer
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Small scale intermittency

Reλ = 150, E1/E2 = 1, `1/`2 = 2.8, t/τ = 6.7
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Small scale anisotropy: skewness

Reλ = 150, E1/E2 = 1, `1/`2 = 2.8:
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Small scale anisotropy: kurtosis

Reλ = 150, E1/E2 = 1, `1/`2 = 2.8:
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Asymptote for E1/E2 → +∞

Skewness:
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Asymptote for E1/E2 → +∞

Kurtosis:
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Longitudinal derivatives
Scheme of the general behaviour for the longitudinal
skewness

mixing direction
component in the

velocity component
normal to the mixing
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Probability density function
Reλ = 150, E1/E2 = 6.7, t/τ = 4.0:
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Large scales: main features of velocity statis-

tics

• HIGH INTERMITTENCY function of:

I gradient of turbulent kinetic energy
I gradient of integral scale

• ANISOTROPY mild on the second order moments

high for higher moments (anisotropy ratio equal

to 2 for the 3rd and 1.5 for the 4th order
moments) slightly increasing with Re
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Small scales: main features of velocity deriva-

tive statistics

• HIGH INTERMITTENCY function of:

I gradient of turbulent kinetic energy
I gradient of integral scale
I much more intense than that of the

large scales

• ANISOTROPY mild on the second order moments

high for higher moments (anisotropy ratio up to

10 for the 3rd order moment and 2 for the 4th
moment) slightly decreasing with Re
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Conclusions
Simulations of a flow with an homogenous energy and
an integral scale gradient show:

• an integral scale inhomogeneity generates an
energy gradient

• the decay exponent of turbulent flow with the
same initial energy depends on their integral scale
⇒ smaller the scale, faster the decay.

• intermittency generated in the mixing layer can
be higher than generated by an energy gradient
and a uniform scale

• anisotropy and intermittency spread to small
scales.

EC-512, Torino, 26-29 Ottobre 2009 – p. 27/27



Decay exponent of large and small
scales in isotropic turbulence
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Motivation

• Verify the dependence of the decay exponent of
homogeneous turbulence from the initial
conditions.

• check the role of the small scales during the
decay

EC-512, Torino, 26-29 Ottobre 2009 – p. 2/19



State of art
Speziale - Bernard 1992, self-preserving decay: all
correlations scale with the Taylor microscale:

BLL(r) = u′2f
( r

L

)

BLLL(r) = u′2

3

2g
( r

L

)

• L = λ(t)

• decay exponent asymptotes -1

• all length scales proportional to λ during the
decay

• derivative skewness S = constant.

EC-512, Torino, 26-29 Ottobre 2009 – p. 3/19



State of art
George 1992: equilibrium hypothesis, relaxed
constraint on triple correlations:

∂tE(k, t) = T (k, t) − νk2E(k, t)

E(k, t) ≈ u′2λf(kλ, ∗)

T (k, t) ≈
νu′2

λ
g(kλ, ∗)

• power-law decay determined by the initial
conditions (initial Reλ)

• S Reλ = const

EC-512, Torino, 26-29 Ottobre 2009 – p. 4/19



Experiments

Lavoje et al., JFM 2007, grid turbulence

Antonia et al., J.Turb. 2003, grid turbulence

Antonia, Orlandi PoF 2003, dns

Antonia, Orlandi JFM 2004, dns

Mansour, Wray, PoF 1994, dns

etc.

EC-512, Torino, 26-29 Ottobre 2009 – p. 5/19



Flow configuration
We follow the time decay of two homogeneous
turbulent flows with the same initial kinetic energy but
different scales:

1

PSfrag replacements

``

x

Larger scale

Smaller scale

homogeneous
turbulence
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Flow configuration
We follow the time decay of two homogeneous
turbulent flows with the same initial kinetic energy but
different scales:
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Flow configuration
We follow the time decay of two homogeneous
turbulent flows with the same initial kinetic energy but
different scales:

uniform
energ

2 2

1

E

uniform
energy

PSfrag replacements
`

``

`

x

Larger scale
Smaller scale
homogeneous

turbulence
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Initial energy spectra
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Initial energy spectra
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Flow configuration

Reλ = 150, E1 = E2, `1 > `2, t/τ = 0

E, `1 E, `2 < `1

Larger integral scale Smaller integral scale
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Flow configuration

Reλ = 150

E1 = E2

`1/`2 = 2.8

t/τ = 0

Movie: E(t)

EC-512, Torino, 26-29 Ottobre 2009 – p. 11/19



Turbulent kinetic energy decay

t/τ

E
(t
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/E

(0
)
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Large and small scale decay
Turbulent kinetic energy is divided into a large-scale
and a small-scale content:

ES(t) =

ks
∫

0

E(k, t)dk

and

EL(t) =

+∞
∫

ks

E(k, t)dk

ks is chosen so that
EL(0) = 0, 6E

ES(0) = 0.4E

EC-512, Torino, 26-29 Ottobre 2009 – p. 13/19



Decay exponent
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Scale by scale exponent
We measure the decay exponent scale by scale:

E(k, t) ≈ t−n(k)

E(k)

k
PSfrag replacements ∆k

EC-512, Torino, 26-29 Ottobre 2009 – p. 15/19



Scale by scale exponent
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Derivative skewness
S∂u/∂x ∼ ta, S∂u/∂xReλ ∼ tb
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Conclusions
Simple numerical experiments on decaying
homogeneous and isotropic turbulence show:

• decay exponent is affected by large and small
scale origanizations

• decay exponent is closer to -1 are associated with
turbulence where more of the energy is
distributed at low wavenumbers

• derivative skewness remains constant

EC-512, Torino, 26-29 Ottobre 2009 – p. 18/19



Uniform integral scale

Movie: E(t)
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Diffusion of a passive scalar across a
turbulent energy gradient
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Passive scalar
Basic phenomenology

• A passive scalar is a contaminant present in so low
concentration that it has no dynamical effect on the
fluid motion,

• Turbulence transports and disperses the scalar by
making particles follow chaotic trajectories, it stretches
and foldes lines of constant concentration, and scalar
fluctuations reach the smaller scales.
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Passive scalar
Basic phenomenology

• at large scales:
• the mean concentration, variance and flux are strongly

influenced by the boundary conditions and scalar
injection

• at small scales:
• scalar differences are not gaussian,
• intermittency observed at inertial range scales as well

as at the dissipation scales, with ramp/cliff structures

see, e.g.:
Warhaft ARFM 2000,
Shraiman and Siggia, Nature 2000,
Gotoh, PoF 2006, 2007.
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Turbulent shearless mixing

General flow configuration:
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periodic boundary condition⇒ 2 mixing layers
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Main features

Shearless mixing layers shows the following properties:
• no gradient of mean velocity, thus no kinetic energy

production
• the mixing is generated by the inhomogeneity in the

turbulent kinetic energy and integral scale
• the mixing layer becomes very intermittent at both

large and small scales (EC-512, 2009)
• the presence of a gradient of energy is a sufficient

condition for the onset of intermittency (Phys.Rev.E,
2008, Phys.Rev.Lett, subm.2010)

• 2D and 3D mixings: different asymptotic layer
thickness growth exponent
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Passive scalar transport

We solve the passive scalar advection-diffusion equation

∂ϑ

∂t
+ uj

∂ϑ

∂xj
=

(−1)n+1

Re Sc
∇2nϑ

for the shearless mixing configuration.

DNS simulations have been performed at Reλ = 150 and
Sc = 1, both in 3D turbulence (6002 × 1200 grid, n = 1) and
2D turbulence (10242 grid, n = 2).
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Scheme of the flow
Passive scalar

3D Mixing 2D Mixing
(6002 × 1200 grid) (10242 grid)

4 Δx

Passive scalar

4 Δx

Run 3D Movie Run 2D Movie

The passive scalar is initially introduced in the low energy
turbulent region and diffuses through the mixing layer


scal2scritta.avi
Media File (video/avi)


scalar2_1024_EE66.avi
Media File (video/avi)
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Mean Scalar Diffusion
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Energy ratio E1/E2 = 6.7, Schmidt number = 1.



Diffusion of a
passive scalar

across a
turbulent

energy
gradient

Introduction

Passive scalar

Mean Scalar

Scalar
moments

Conclusions

Scalar mixing layer thickness

3D Mixing 2D Mixing
∆
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∆
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Scalar thickness
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Scalar layer thickness: ∆ϑ = xϑ=0.75 − xϑ=0.25

3D mixing: ∆ϑ ∼ t0.45, 2D mixing: ∆ϑ ∼ t0.7
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Scalar variance
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kinetic energy region
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Scalar variance

3D Mixing 2D Mixing

(x-xc )/Δθ

θ’
2
/θ
’2
(0
,t)

-3 -2 -1 0 1 2 3
0

0.2

0.4

0.6

0.8

1
1.1
2.5
3.8
5.6
7.5
10
V&W

t/τ

 0

 0.05

 0.1

 0.15

 0.2

 0.25

-3 -2 -1  0  1  2  3

(x − xc)/∆θ

θ
′
2

t/τ
1
5
10
20

Veeravalli and Warhaft, 1990: laboratory experiment, linear
source in the mixing layer centre, data at x/x0 = 0.4
(t/τ ≈ 4).
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Scalar skewness
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Strong non-gaussian statistic at the mixing layer border
2D: intermittency penetrates more in the direction opposite
to the energy gradient.
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Scalar kurtosis
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2D: higher asymmetry, wider intermittent region
Intermittency gradually reduces as the mixing procedes
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No energy gradient
2D mixing - numerical validation
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Scalar flux
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Conclusions

2D/3D Passive scalar diffusion across an energy step:
• all moments profiles are skewed towards the higher

kinetic energy region
• self-similar profiles of first and second order moments
• large intermittency and non-gaussian behaviour on

both sides of the mixing, even where the scalar flux is
small.

• larger asymmetry in moment distributions in 2D
mixing

• 2D: no stretching, inverse cascade, long-range
interaction which penetrate more against the energy
gradient
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Presentation of the problem
2 turbulent flows put aside with different kinetic energies :
I a high energy field on the left of energy E1

I a low energy field on the right of energy E2

x

E1

E2

High Energy

Low Energy

2∆

Mixing Layer

π 2π0

Mixing layer thickness : ∆(t)

∆(0) ≈ l (integral scale)

l ≈ D/80

Periodic boundary conditions : 2 mixing layers in the simulation
2/13



Presentation of the problem

Main goals :
I Study the turbulent diffusion through the evolution in time of the

mixing layer
I Compare 2D and 3D cases

Shearless mixing layers show the following properties:
I No gradient of mean velocity→ no kinetic energy production
I Mixing generated by the inhomogeneity in the turbulent kinetic

energy
I Intermittent behavior at both large and small scales (EC-512,

2009)
I Gradient of energy : sufficient condition for the onset of

intermittency (Phys.Rev.E, 2008)
I 2D and 3D mixings→ show a very different behaviour
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A visualisation
Kinetic energy : evolution in time
Initial energy ratio : E1/E2 = 6.6

2 D 3 D

4/13


ene_1024.avi
Media File (video/avi)


E67blu_800x800.avi
Media File (video/avi)



Important remarks

Main parameter : Initial energy ratio E1/E2

The system has been studied using the values :
E1/E2 = 6.6, 40, 300, 104, 106

In the Navier Stokes equation :

∂tu + (u · ∇)u =
1
ρ
∇p + (−1)p+1νn∆2nu

2D : An hyperviscous coefficient (n = 2) has been used

3D : The total energy decays faster than in 2D

5/13



Evolution of the mixing layer

Time evolution of the mixing layer thickness ∆(t) :
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⇒ 2D mixes faster !
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Velocity statistics

Skewness (computed along the homogeneous y direction)
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Velocity statistics

Kurtosis (computed along the homogeneous y direction)
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Velocity statistics
Position of the maximum of skewness XS
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2D⇒ XS(t) ∝ t evolves faster than ∆(t) ∝ t0.7

3D⇒ XS(t) ∝ ∆(t) ∝ t0.33
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Time evolution

Time evolution of the energy profile :

—— Mixing layer
—— Position of the maximum of skewness

Total time in both cases : ∼ 22 τ
10/13


ene_2D_3D.avi
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Velocity statistics
Evolution of the penetration η = XS/∆

2D⇒ η(t) diverges

3D⇒ η(t) reaches a constant value : ηmax
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Memory

Proposal of a memory measure as a global quantity referred to its
own time derivative, for example

MEM =
∆

∆′

2D : d∆(t)
dt ∼ t−0.3, 3D : d∆(t)

dt ∼ t−0.67

2D : MEM =
∆(t)
∆(t)t
∼ 1.4t, 3D : MEM =

∆(t)
∆(t)t
∼ 3t

different dimensionality, same trend (qualitative universality?), with a
different coefficient

3D has a slightly longer memory than 2D

12/13



Conclusions

Comparison between the 2D and 3D situation :

Similarities :
I ∆(t) evolves asymptotically in time as a power law
I A strong intermittency→ visible on the high order moments

Differences :
I Mixing is faster in 2D
I No autosimilarity in time in the 2D case

Possible explanation :

The evolution of ∆(t) is essentially led by the large scales
2D→ energy tends to concentrate to the large scales (inverse cascade)
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