Bulk Turbulence of Dilute Polymer Solutions: Lagrangian Particle Tracking Measurements

Haitao Xu,

Alice M. Crawford, Nicolas Mordant, Nicholas T. Ouellette, Hengdong Xi, and Eberhard Bodenschatz

Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany Laboratory of Atomic and Solid-State Physics, Cornell University, USA

June 1, 2011, KITP, UCSB, Santa Barbara, USA

- Introduction
- Acceleration Statistics
- Velocity Structure Functions

Flexible Polymers in Flow Field

Control Parameters

Reynolds number Re, R_{λ}

Weissenberg number Wi

Turbulence Energy Cascade

 $\epsilon_I = \epsilon_T = \epsilon_D$

Turbulence Energy Cascade

 $\epsilon_I \neq \epsilon_T \neq \epsilon_D$

Polyacrylamide (PAM): 18 x 10⁶ amu

$$R_G = 0.5 \mu m, \quad R_{\max} = 77 \mu m, \quad au_p = 43 ms$$

Turbulence property at $R_{\lambda} = 350$:

$$\eta=84\mu m, \quad au_\eta=7.1ms$$
 $Wi=rac{ au_p}{ au_\eta}=6$

Change concentration from 0 to 20 wppm.

Acceleration Statistics: Small Scales

A. M. Crawford, N. Mordant, HX, E. Bodenschatz (NJP, 2008)

von Karman swirling flow between counter-rotating disks

 $L \approx 7 \text{ cm}$ $R_{\lambda} = 140 - 485$ $\eta = 320 - 50 \ \mu\text{m}$ $\tau_{\eta} = 105 - 2.6 \text{ ms}$

Size of the meas. vol. $(4 mm)^3$

Tracer particles: neutrally buoyant polystyrene spheres.

 $d_p = 26 \mu m, \ \rho_p / \rho_w = 1.06$

Acceleration PDF

$$R_{\lambda} = 285, \ \phi = 5 \text{ ppm}$$

Acceleration PDF, normalized

$$R_{\lambda} = 285, \ \phi = 5 \text{ ppm}$$

Acceleration Variance

 $R_{\lambda} = 140(\Box), 200(\circ), 285(\bigtriangleup), 485(\diamond); \phi = 0 - 10 \text{ ppm}$

Acceleration Autocorrelation

$$\tilde{c}_{ij}(\tau) = \frac{\langle a_i(t)a_j(t+\tau)\rangle_{t\&\tau}}{\left(\langle a_i(t)^2\rangle_{t\&\tau} \langle a_j(t+\tau)^2\rangle_{t\&\tau}\right)^{1/2}} \left\langle a(t)^2 \right\rangle_t$$

$$\tilde{C}_{ij}(\tau) = \frac{\tilde{c}_{ij}(\tau)}{\langle a^2 \rangle}$$

Acceleration Autocorrelation

e-folding time $au_{1/e}$:

$$\tilde{C}(\tau_{1/e}) = 1/e$$

 $R_{\lambda} = 285, \ \phi = 0, 3.5, 5, 10 \text{ ppm}$

What is Changed at the Small Scale?

$$\langle a^2 \rangle \sim \frac{\varepsilon_D^{3/2}}{\nu^{1/2}} \qquad \qquad \tau_{1/e} \sim \frac{\nu^{1/2}}{\varepsilon_D^{1/2}}$$

If ν is increased, but ε_D stays the same:

$$\langle a^2 \rangle \sim \frac{\varepsilon_D}{\tau_{1/e}}$$

If ε_D stays the same, but ν is decreased:

$$\langle a^2 \rangle \sim \frac{\nu}{\tau_{1/e}^3}$$

What is Changed at the Small Scale?

- Polymers suppress the magnitude of fluid acceleration, but the shape of the acceleration PDF.
- The decrease of acceleration variance and the increase of acceleration correlation time suggest that the dissipation rate at the small scales is decreased by the presence of polymers.
- These effects depend on polymer concentration.

Acceleration Statistics: "Inertial Range"

von Karman swirling flow between counter-rotating disks

 $egin{aligned} R_\lambda &= 350 \ \eta &= 84 \mu m \ au_\eta &= 7.1 ms \ L &= 7 cm \end{aligned}$

Size of the meas. vol. $(2cm)^3$

Tracer particles: neutrally buoyant fluorescent polystyrene spheres. $d_p=33\mu m,~
ho_p/
ho_w=1.06$

Experiment Setup

- Phantom v7.1 CMOS cameras: 5000 fps at 512 x 512 pixels
- Q-switched Nd:YAG laser: 60W, up to 120 kHz

Acceleration PDF

$$R_{\lambda} = 460$$

Acceleration PDF

 $R_{\lambda} = 460$

$$R_{\lambda} = 350$$

Spatial Correlations

$$R_{LL}(r) = \langle a_{\parallel}(\mathbf{x})a_{\parallel}(\mathbf{x}+\mathbf{r})\rangle$$
$$R_{NN}(r) = \langle a_{\perp}(\mathbf{x})a_{\perp}(\mathbf{x}+\mathbf{r})\rangle$$

Spatial Correlations of Acceleration

HX, Ouellette, Vincenzi, Bodenschatz (PRL, 2007)

Spatial Correlations of Acceleration

$$R_{\lambda} = 350$$

$$\mathbf{a} = -
abla p +
abla \cdot \mathbf{T}^p$$

$$\Rightarrow \quad R_{NN}(r) \stackrel{\bullet}{\to} \frac{1}{r} \int_0^r R_{LL}(r) dr$$

Isotropic Relation: Large r

- Fluid acceleration in polymer solutions correlation over much larger range.
- At large separations, the correlations seem to still satisfy the isotropic relation.
- What constraints would this observation impose on the constitutive equations for the polymer stress tensor?

Velocity Structure Functions

N. T. Ouellette, HX, E. Bodenschatz (JFM, 2009)

von Karman swirling flow between counter-rotating disks

$$egin{aligned} R_\lambda &= 200 - 415 \ \eta &= 190 - 64 \ \mu \mathrm{m} \ au_\eta &= 37 - 4.1 \ \mathrm{ms} \ L &\equiv rac{u'^3}{\epsilon} pprox 7 \ \mathrm{cm} \end{aligned}$$
Size of the meas. vol. $(5 \mathrm{cm})^3$
Tracer particles: nearly neutrally buoyant fluorescent polystyrene spheres. $d_p &= 33 \mu m, \
ho_p /
ho_w = 1.06 \end{aligned}$

Experiment Setup

- Phantom v7.1 CMOS cameras: 5000 fps at 512 x 512 pixels
- Q-switched Nd:YAG laser: 60W, up to 120 kHz

Eulerian Structure Functions

$$egin{aligned} D_{NN}(r) &= \langle |u_{\perp}(\mathbf{x}+\mathbf{r}) - u_{\perp}(\mathbf{x})|^2
angle \ D_{LL}(r) &= \langle |u_{\parallel}(\mathbf{x}+\mathbf{r}) - u_{\parallel}(\mathbf{x})|^2
angle \end{aligned}$$

Polymer Effect on Structure Function

Viscosity Effect?

Wi Dependence

 $r_p \sim \eta_p W i^n$ $\eta_p \equiv (\nu \tau_p)^{1/2}$

Length Scale

Length Scale

$$\eta_p W i^{-0.58} = (\nu \tau_p)^{1/2} W i^{-0.58} = \eta_w W i^{-0.08}$$

Concentration Effect

Eulerian Structure Functions

Eulerian Structure Functions

Energy Transfer and Dissipation Rates

Change of ϵ_T can not be explained by $u_{\rm rms}$ alone.

Eulerian Structure Functions

 $D_{LL}(r) = C_2(\epsilon_T r)^{2/3}; \quad (\eta \ll r \ll L)$

Eulerian Structure Functions

Energy Transfer and Dissipation Rates

Sharp transition in ϵ_T between 5 and 7 wppm.

Wi Dependence?

Berti et al. (EPL, 2006)

• Effect of polymers at varying Wi (by varying R_{λ}) on Eulerian velocity structure functions may be normalized with re-scaled separation. The length-scale has a (weak?) Wi dependence.

• The effect of polymer concentration on apparent energy transfer rate and energy dissipation rate is different. There exist a critical concentration on energy transfer rate

Velocity Structure Functions: New Experiments

with H.-D. Xi and E. Bodenschatz

How to Isolate Wi Effect?

$$L \approx \text{const.} \qquad \eta = \frac{\nu^3}{\varepsilon}$$
$$R_\lambda \propto (L/\eta)^{2/3}$$
$$Wi = \frac{\tau_p}{\tau_\eta} \propto \frac{\mu/k_b T}{(\nu/\varepsilon)^{1/2}} \propto \nu^2$$

$$R_{\lambda} = \sqrt{\frac{15u^4}{\nu\varepsilon}} \qquad \qquad \tau_{\eta} = \sqrt{\frac{\nu}{\varepsilon}} \propto \frac{1}{\nu}$$

Preliminary Results

Preliminary Results

Preliminary Results

Thanks!