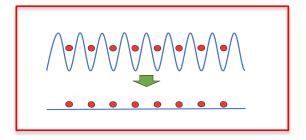
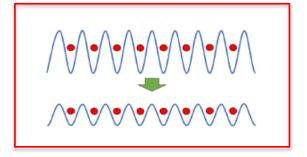
Quench dynamics of an optical lattice - local and global aspects

Bosons released in optical traps



Time evolution:
The Lieb-Liniger Hamiltonian



Time evolution:
The Sine-Gordon Hamiltonian

Natan Andrei Rutgers university

Garry Goldstein

Boston University

Deepak lyer

Bucknell University

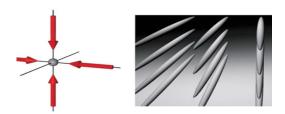
Colin Rylands SISSA

Non Equilibrium Universality in Many Body Physics
KITP, Sept 2021

Non equilibrium dynamics of quantum systems -**Quantum Quench of Optical Lattices**

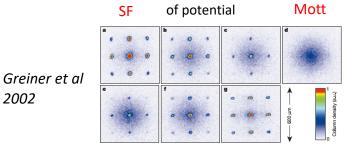
- Nonequilibrium the new frontier : Old and new questions
- Many experiments: cold atom systems, nano-devices, molecular electronics
- Isolated systems effects not washed out by coupling to environment
- Fine control of parameters
- Many systems described by integrable Hamiltonians
- Standard nonequilibrium protocol: Quantum Quench

e.g. release bosons in optical traps

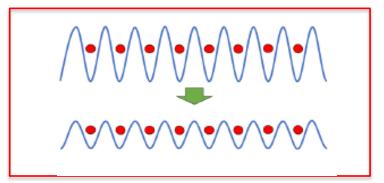


Bloch et al 2008

2002



Sudden raise



Mott

SF

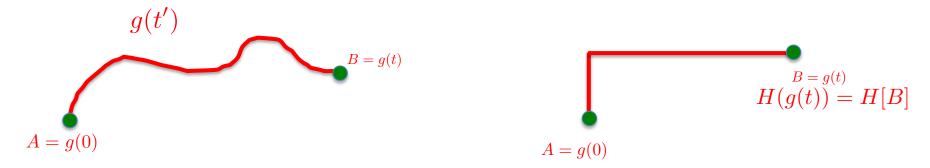
The Lieb-Liniger model

The sine-Gordon model

Time evolution - Quench protocol in isolated systems

Quench protocol

- Isolated system with Hamiltonian $\,H(t) = H[g(t)]\,$ depends on "work parameter" g(t)
- Initial state, $|\Phi_i\rangle$, typically ground state of H(0)=H[A]
- Evolve initial state under H(t') = H[g(t')] from t' = 0 to t' = t



$$|\Phi_i,t\rangle = Te^{-i\int_0^t H(t')dt'} \, |\Phi_i\rangle \qquad \qquad |\Phi_i,t\rangle = e^{-iHt} |\Phi_i\rangle \qquad \qquad \text{Sudden quench}$$

- Process depends on initial state and on Hamiltonian
- Local characteristics: evolution of local observables, correlations, thermalization, ETH ...
- Global characteristics: quantum work, spread of entanglement ...

Time Evolution and the Bethe Ansatz

How to time evolve the initial state?

A given state $|\Phi_0\rangle$ can be time evolved using partition of the unity $I = \sum_{\lambda} |F^{\lambda}\rangle\langle F^{\lambda}|$

$$|\Phi_0\rangle = \sum_{\lambda} |F^{\lambda}\rangle\langle F^{\lambda}|\Phi_0\rangle \qquad \longrightarrow |\Phi_0,t\rangle = e^{-iHt}|\Phi_0\rangle = \sum_{\lambda} e^{-i\epsilon_{\lambda}} |F^{\lambda}\rangle\langle F^{\lambda}|\Phi_0\rangle$$

If H integrable \longrightarrow eigenstates $|F^{\lambda}\rangle$ are known via the Bethe-Ansatz

- Use Bethe Ansatz to study quench evolution and nonequilibrium
- New technology is necessary:
- Standard approach: PBC (or OBC) → Bethe Ansatz eqns → spectrum → thermodynamics
- Non equilibrium entails additional difficulties:
- i. Compute overlaps (form factors) ii. Compute matrix elements iii. Sum over complete basis

Much work in this direction: quench action

J. S. Caux et al, Essler et al, Calabrese et al

ii. Contour approach - does not required computation of overlaps

Yudson's contour representation (infinite volume)

Instead of $|\Phi_0\rangle = \sum_{\lambda} |F^{\lambda}\rangle\langle F^{\lambda}|\Phi_0\rangle$ introduce (directly in infinite volume):

• Contour representation of $|\Phi_0\rangle$

$$|\Phi_0\rangle = \int_{\gamma} d^N |F^\lambda\rangle (F^\lambda|\Phi_0\rangle$$

V. Yudson, sov. phys. JETP (1985)

Computed S-matrix of Dicke model

with: $|F^{\lambda}
angle$ Bethe eigenstate, labeled by momenta $\{\lambda\}\!=\lambda_1\dots\lambda_N$

 $|F^{\lambda})$ obtained from Bethe eigenstate by setting S=I in one quadrant $\theta(ec{x})= heta(x_1>x_2>\cdots.x_N)$

 γ contour in momentum space $\{\lambda\}$ determined by **pole structure** of $S(\lambda_i - \lambda_j)$

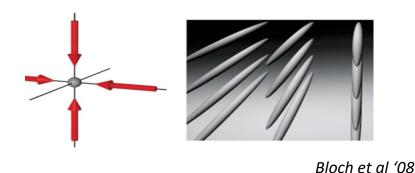
- In the infinite volume limit momenta $\{\lambda\}$ are not quantized (no Bethe Ansatz equations)
- Can generalize approach to *finite volume* (Goldstein, NA), allows application to thermodynamic systems with finite density
- The time evolution follows

$$|\Phi_0, t\rangle = \int_{\gamma} d^N \lambda \ e^{-iE(\lambda)t} |F^{\lambda}\rangle \langle F^{\lambda}|\Phi_0\rangle$$

Ultracold Atoms – the Lieb Liniger model

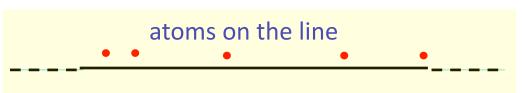
Gas of neutral atoms moving on the line and interacting with shortrange interaction $V(x_1-x_2)=c\delta(x_1-x_2)$

$$H_N = -\sum_{j=1}^N \frac{\partial^2}{\partial x_j^2} + 2c \sum_{j < l} \delta(x_j - x_l)$$



$$c > 0$$
 repulsive $c < 0$ attractive

Can be tune by Feshbach resonance



Comment:

- Very short range interaction. Valid for low densities,

$$l = L/N \gg l_{\mathrm{Van\,der\,Vaals}}$$

- The description of physics depends on the scale of observation

Bosonic system – BA solution

The N-boson eigenstatestate (Lieb-Liniger '63)

$$|F^{\lambda}\rangle = |\lambda_1, \cdots, \lambda_N\rangle = \int_y \prod_{i < j} Z_{ij}^y (\lambda_i - \lambda_j) \prod_j e^{i\lambda_j y_j} b^{\dagger}(y_j) |0\rangle = \int_y F^{\lambda}(y_1 \cdots y_N) \prod_j b^{\dagger}(y_j) |0\rangle$$

$$\left\{ egin{array}{ll} real & c>0 \ n ext{-strings} & c<0 \end{array}
ight.$$

Dynamic factor:
$$Z_{ij}^y(\lambda_i - \lambda_j) = \frac{\lambda_i - \lambda_j - ic \, sgn(y_i - y_j)}{\lambda_i - \lambda_j - ic} = \begin{bmatrix} 1 & y_i > y_j \\ S^{ij} & y_i < y_j \end{bmatrix}$$

- The 2-particle S-matrix: $S_{ij}(\lambda_i-\lambda_j)=rac{\lambda_i-\lambda_j+ic}{\lambda_i-\lambda_j-ic}$ enters when the particles cross
- poles of the S-matrix at: $\lambda_i = \lambda_i + ic$
- The energy eigenvalues

$$H|\lambda_1,\cdots,\lambda_N\rangle = \sum_i \lambda_i^2 |\lambda_1,\cdots,\lambda_N\rangle$$

- Thermodynamics: impose PBC \longrightarrow BA eqns \longrightarrow momenta \longrightarrow Energy eigenvalues
- Dynamics (infinite volume): momenta unconstrained

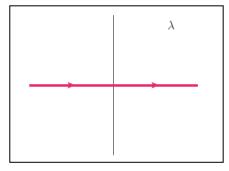
Bosonic system - contour representation

The contour representation $|\Phi_0\rangle=\int_{\gamma}d^N\lambda\ |F^\lambda\rangle\langle F^\lambda|\Phi_0\rangle$ takes the form:

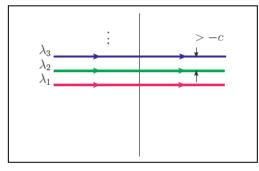
$$|\Phi_{0}\rangle = \int_{x} \Phi_{0}(\vec{x})b^{\dagger}(x_{N})\cdots b^{\dagger}(x_{1})|0\rangle = F^{\lambda}(y)$$

$$= \int_{x,y} \int_{\lambda} \theta(\vec{x})\Phi_{0}(\vec{x}) \prod_{i< j} \frac{\lambda_{i} - \lambda_{j} - ic \ sgn(y_{i} - y_{j})}{\lambda_{i} - \lambda_{j} - ic} \prod_{j} e^{i\lambda_{j}(y_{j} - x_{j})} b^{\dagger}(y_{j})|0\rangle$$

$$(F^{\lambda}|\Phi_{0}\rangle$$



Repulsive c > 0



Attractive c < 0,

contour accounts for strings, bound states

It time evolves to:

$$|\Phi_0, t\rangle = \int_x \int_y \int_\lambda \theta(\vec{x}) \Phi_0(\vec{x}) \prod_{i < j} \frac{\lambda_i - \lambda_j - ic \, sgn(y_i - y_j)}{\lambda_i - \lambda_j - ic} \prod_j e^{-i\lambda_j^2 t} e^{i\lambda_j (y_j - x_j)} b^{\dagger}(y_j) |0\rangle$$

Expression contains full information about the dynamics of the system

What to calculate?

We shall study local correlation functions:

1. Evolution of the density $ho(x)=b^\dagger(x)b(x)$ $C_1(x,t)=\langle\Phi_0,t|b^\dagger(x)b(x)|\Phi_0,t\rangle=\int dx_1..dx_N\,|\Phi_0(x_1,..,x_N,t)|^2\sum_i\delta(x-x_j)$

- The probability to find the bosons at point x at time t if at time t=0 they started with wave function $\Phi_0(x_1,..,x_N)$
- Can be measured by Time of Flight experiments
- competition between quantum broadening and attraction
- 2. Evolution of noise correlation

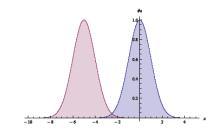
$$C_2(x, y, t) = \frac{\langle \Phi_0, t | \rho(x) \rho(y) | \Phi_0, t \rangle}{C_1(x, t) C_1(y, t)} - 1$$

- Time dependent Hanbury Brown - Twiss effect

Evolution of a bosonic system: density

- Consider an initial state:

$$\Phi_0(x_1, x_2) = \frac{1}{(\pi\sigma^2)^{\frac{1}{4}}} e^{-\frac{(x_1)^2 + (x_2 + a)^2}{2\sigma^2}}$$

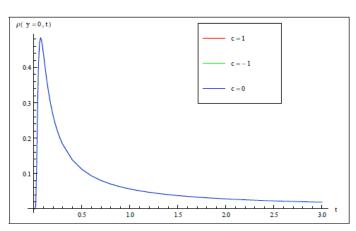


- Its evolution is:

$$\Phi_0(y_1, y_2, t) = \int_{\mathcal{T}} \Phi_0(x_1, x_2) \frac{1}{4\pi i t} e^{i\frac{(y_1 - x_1)^2}{4t} + i\frac{(y_2 - x_2)^2}{4t}} \left[1 - c\sqrt{\pi i t}\theta(y_2 - y_1)e^{\frac{i}{8t}\alpha^2(x, y, t)} \operatorname{erfc}(\frac{i - 1}{4}\frac{i\alpha(x, y, t)}{\sqrt{t}})\right]$$

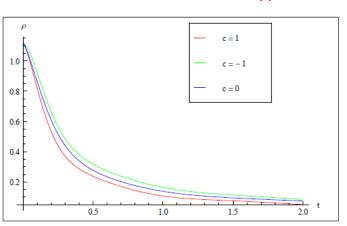
- Compute the evolution of the density ho(0,t)

i. Initial condition: $a\gg\sigma$



No interaction effects- small initial overlap, then density too low

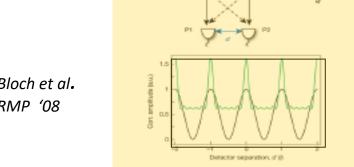
ii. Initial condition: $a \ll \sigma$



Strong interaction effects: initial overlap

The Hanbury Brown – Twiss effect

- Hanbury brown-Twiss effect for two bosons

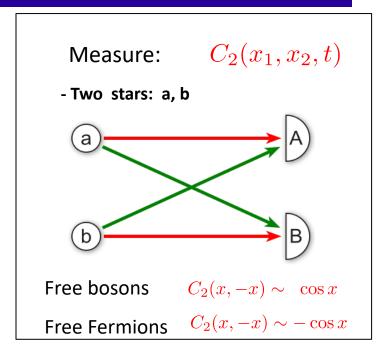


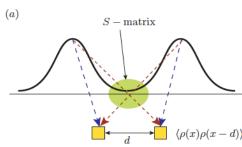
Bloch et al. RMP '08

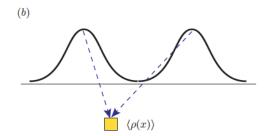
Time dependent Hanbury Brown - Twiss effect

Hanbury-Brown Twiss effect

- Time dependent
- Many bosons
- More structure: main peaks, sub peaks
- Effects of interactions?
 - repulsive bosons evolve into fermions
 - attractive bosons evolve to a condensate







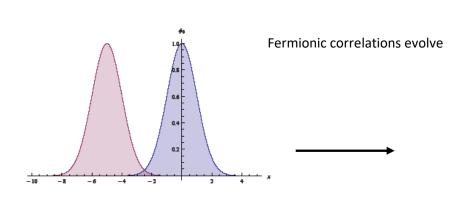
Evolution of repulsive bosons into fermions: HBT

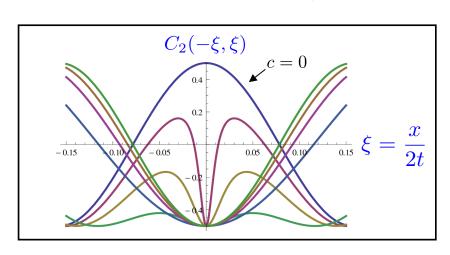
Density - Density correlation: long time asymptotics - repulsive: (Iyer, NA)

- Bosons turn into fermions as time evolves (for any c>0)
- Can be observed in the noise correlations: (dependence on t only via $\xi=x/2t$)

$$C_2(x_1, x_2, t) \to C_2(\xi_1, \xi_2) = \frac{\langle \rho(\xi_1) \rho(\xi_2) \rangle}{\langle \rho(\xi_1) \rangle \langle \rho(\xi_2) \rangle} - 1,$$

$$c/a = 0, .3, \cdots, 4$$





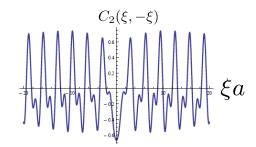
Fermionic dip develops for any repulsive interaction on time scale set by $1/c^2$

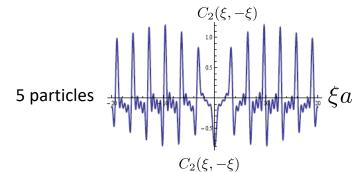
Evolution of a bosonic system: noise correlations

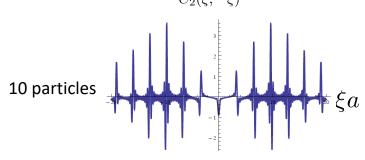
Noise correlations – starting from a lattice

Repulsive bosons

3 particles

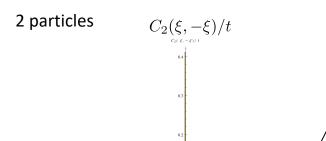


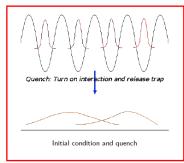




Fermionic dip as $\xi \to 0$ Structure emerges at $\xi a = \sigma$

Attractive bosons

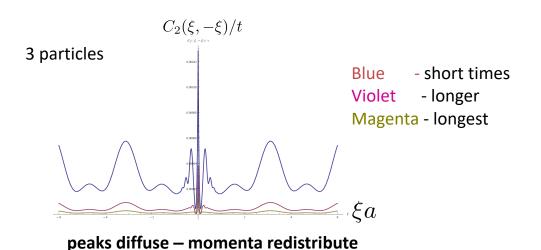




Blue - short times Violet - longer Magenta - longest

central peaks increase with time

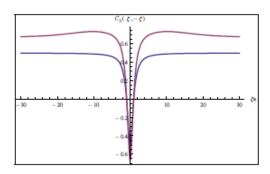
- weight in the bound states increases



Evolution of a bosonic system: noise correlation

Noise correlations — starting from a condensate:

Repulsive bosons



Two (blue) and three bosons,

Attractive bosons



Three bosons, at times:

$$tc^2 = 20;40;60$$

Dynamic Fermionization

Long time asymptotics - repulsive interaction

Recall: $|\Phi_0, t\rangle = \int_{\gamma} d^N \lambda \ e^{-iE(\lambda)t} |F^{\lambda}\rangle \langle F^{\lambda}|\Phi_0\rangle$

• Bosons turn into fermions as time evolves (for any c>0)

D. Jukic et al '08

$$\begin{split} |\Phi_0,t\rangle &= \int_x \int_y \int_\lambda \theta(\vec{x}) \Phi_0(\vec{x}) \prod_{i < j} \frac{\lambda_i - \lambda_j - ic \ sgn(y_i - y_j)}{\lambda_i - \lambda_j - ic} \prod_j e^{-i\Sigma_j \lambda_j^2 t - \lambda_j (y_j - x_j)} \prod_j b^\dagger(y_j) |0\rangle \\ &= \int_x \int_y \int_\lambda \theta(\vec{x}) \Phi_0(\vec{x}) \prod_{i < j} \frac{\lambda_i - \lambda_j - ic\sqrt{t} \ sgn(y_i - y_j)}{\lambda_i - \lambda_j - ic\sqrt{t}} e^{-i\Sigma_j \lambda_j^2 - \lambda_j (y_j - x_j)/\sqrt{t}} \prod_j b^\dagger(y_j) |0\rangle \\ &\to \int_x \int_y \int_\lambda \theta(\vec{x}) \Phi_0(\vec{x}) e^{-i\Sigma_j \lambda_j^2 - \lambda_j (y_j - x_j)/\sqrt{t}} \prod_{i < j} sgn(y_i - y_j) \prod_j b^\dagger(y_j) |0\rangle \\ &= e^{-iH_0^f t} \int_{x,k} \mathcal{A}_x \ \theta(\vec{x}) \Phi_0(\vec{x}) \prod_j c^\dagger(x_j) |0\rangle. \\ &\mathcal{A}_x \quad \text{antisymmetrizer} \end{split}$$

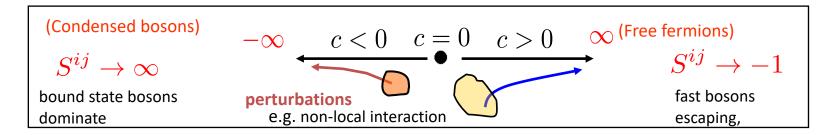
where

$$H_0^f = -\int_x c^{\dagger}(x)\partial^2 c(c)$$

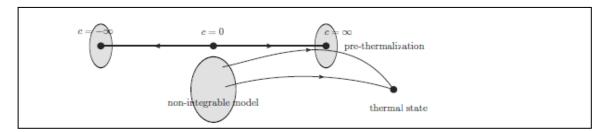
- In the long time limit repulsive bosons for any c>0 propagate under the influence of Tonks Girardeau Hamiltonian (hard core bosons \sim free fermions)
- Argument valid for any initial state Φ_0
- Experimentally observed recently Greiner Group 2015, Weiss group 2020
- Scaling argument fails for attractive bosons (instead, they form bound states)

Evolution of a bosonic system

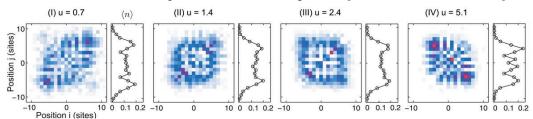
• Conclusion: coupling constant "effectively evolves" with time $t \sim \ln(D_0/D)$

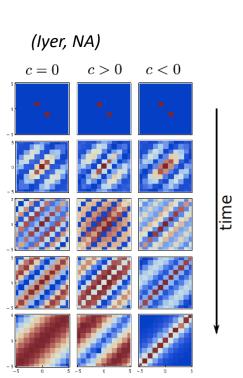


• What is beyond $c = \infty$? Thermalization



- Fermionization also occurs on the lattice: Bose Hubbard model (not integrable)
- Observed experimentally (Greiner et al. '15)



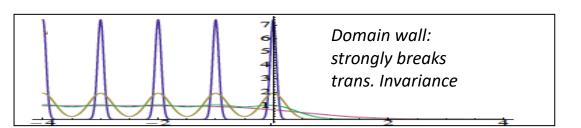


Evolution to NESS: Domain wall (no thermalization)

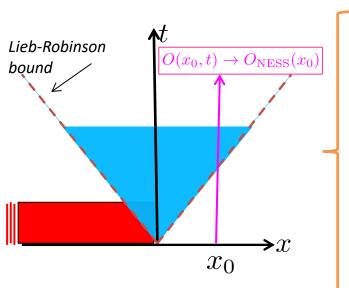
Example: time evolution from a non-trans. invariant initial state (no equilibration)

$$|\Psi (t=0)\rangle = \prod_{j=0}^{\infty} \int_{-\infty}^{\infty} \varphi (x+jl) b^{\dagger} (x) |0\rangle$$

with:
$$arphi\left(x
ight)=rac{e^{-x^{2}/\sigma}}{\left(\pi\sigma/2
ight)^{1/4}}$$



- System evolves to NESS



$$\rho(x,t) o$$
 (G Goldstein, NA)

$$t \int_{O(x_0,t) \to O_{\rm NESS}(x_0)} \left[\begin{array}{c} \frac{1}{l} \left(1 + \sum_{s=1}^{\infty} e^{-\pi^2 \left(8t^2/\sigma + \sigma/2\right) s^2/l^2} \cos\left(2\pi s x/l\right) \right) \\ \text{Outside the cone} \end{array} \right] x \ll -\sqrt{8t^2/\sigma}$$

$$rac{1}{l}\left(rac{1}{2}-rac{4\pi}{cl}
ight)$$
 Nonequilibrium steady state (NESS) Independent of x,t - interaction effects

$$\begin{split} &\frac{1}{l}\left(\frac{1}{2}Erfc\left(\frac{x}{\sqrt{A}}\right) + \right. \\ &+ \frac{16}{\pi cl}e^{-x^2/A}\left(\frac{1}{2}\sqrt{\pi}\frac{x}{\sqrt{A}}Erfc\left(\frac{x}{\sqrt{A}}\right) - \frac{1}{2}e^{-x^2/A}\right) & \mathcal{X} \\ &+ \frac{16}{\pi cl}\frac{\pi}{2}\left(1 - \frac{1}{2}Erfc\left(\frac{x}{\sqrt{A}}\right)\right)Erfc\left(\frac{x}{\sqrt{A}}\right) \end{split} \qquad \qquad A \equiv \\ &\left. \begin{array}{c} A \equiv \\ Crossover\ regime \end{array} \right. \end{split}$$

$$A\equiv 8t^2/\sigma+\sigma/2$$

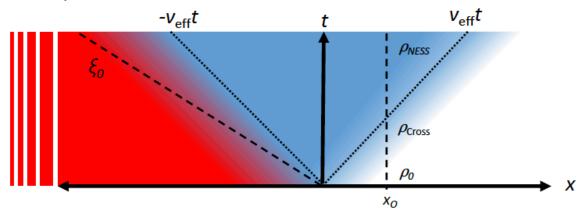
$$x \gg \sqrt{8t^2/\sigma}$$

 $\sigma \ll |x| \ll t$

 $x \sim t$

Evolution to NESS: Domain wall (no thermalization)

The domain wall quench:



- **Nonequilibrium Steady state** (NESS) : order of limits $L \to \infty$ vs. $t \to \infty$
- Evolution along space-time rays $x/t=\xi_0$
- RG flow in time, dynamical fermionization

On the left, outside the "light cone,
$$\rho(x,t) = \frac{1}{\delta} \left[1 + \sum_{s=1}^{\infty} e^{-\sigma(t) \frac{\pi^2 s^2}{\delta^2}} \cos \left(\frac{2\pi sx}{\delta} \right) \right]$$

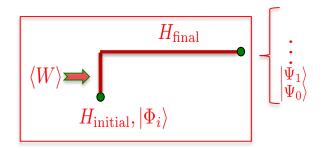
Same result as from TG gas (Tonks-Girardeau $\ c
ightarrow \infty$), cf $\$ Hanbury Brown - Twiss $\$ effect

Global Aspects: Nonequilibrium Thermodynamics

Quantum work

• During the quench energy is pumped into the system - $W=E_{\rm final}-E_{\rm initial}$: work is done

First law of thermo' dE=dQ+dW but system isolated: dQ=0 so dE=dW



Work – random variable: involves two measurements - initial and final energies,

- at initial time yielding $|\Phi_i
 angle$ and ϵ_i with probability $P_i=1$
- at final time yielding $|\Psi_n
 angle$ and E_n with probability $P_{i o n}=|\langle\Psi_n|\Phi_i
 angle|^2$
- For a sudden quench the work distribution: (Talkner et al '07 "Not an observable")

$$P(W) = \sum_{n} \delta (W - (E_n - \epsilon_i)) |\langle \Psi_n | \Phi_i \rangle|^2$$

Nonequilibrium Dynamics – Loschmidt amplitude

Claim: Work distribution is related to Loschmidt Amplitude (*Talkner et al 07*)

$$\mathcal{G}(t) = \langle \Phi_i | e^{-iHt} | \Phi_i \rangle$$

$$P(W) = \int_{-\infty}^{\infty} \frac{\mathrm{d}t}{2\pi} e^{iWt + i\epsilon_i t} \mathcal{G}(t)$$

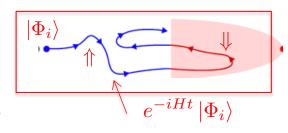
Related concepts:

Return Probability Survival probability Persistence

The Loschmidt amplitude probes the full Hilbert space of states

$$\mathcal{G}(t) = \langle \Phi_i | e^{-iHt} | \Phi_i \rangle = \sum_{n} e^{-iE_n t} |\langle \Psi_n | \Phi_i \rangle|^2$$

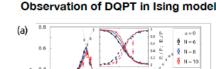
starting from and weighted by overlaps with initial state

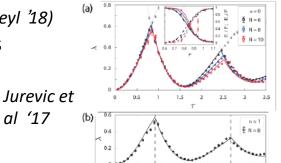


May exhibit singularities Dynamical Quantum Phase Transition (Kehrein, Heyl '18) similarities to thermodynamic phase transitions, Fisher &Lee-Yang zeroes

$$\lambda(t) = \lim_{N \to \infty} \frac{1}{N} \log |\mathcal{G}(t)|^2$$

DQPT depends on initial state, not only on the Hamiltonian



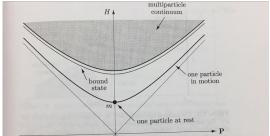


al '17

Nonequilibrium Thermodynamics -Work done in a quench

• P(W) has the form of the spectral function:

Silva, Gambassi, Palmai, Sotiriadis, Mussardo, Calabrese, Goold: '08 –'18



- Defined for $W \geq \delta E = E_0 \epsilon_i$
 - A delta function at threshold $W=\delta E$ weighted by the fidelity $\mathcal{F}=|\langle\Psi_0|\Phi_i\rangle|^2$ transition from the initial state to the ground state of H_f
- If H_f is gapped and translation invariant continuum of excited states into which $|\Phi_i\rangle$ can transition with $W=2m+\delta E$ lowest threshold for the continuum.
- Power like behavior at threshold $P(W) \sim heta(W \delta E 2m)(W \delta E 2m)^{lpha}$
- Similarly the four-particle emission continuum threshold $W=4m+\delta E$
- It there are bound states m_b then delta function may appear at $W=m_b+\delta E$
- Work distribution directly measureable
- Reversible and irreversible processes, entropy production, spread of entanglement
- Fluctuation theorems: Jarzynski '97 $\langle e^{-\beta W} \rangle = e^{-\beta \Delta F}$ Cohen-Galavotti '95 $\frac{P(S)}{P(-S)} = e^{\frac{S}{k_B}}$ and more.
 - relate equilibrium and nonequilibrium, relate forward and backward evolution

Eigenstates and Yudson states

The exact eigenstates of the Lieb-Liniger model – study finite size

$$|\{k_j\}\rangle = \int d^N x \prod_{\substack{i,j=1\\i < j}}^N \frac{k_i - k_j - ic\operatorname{sgn}(x_i - x_j)}{k_i - k_j - ic} \prod_{l=1}^N e^{ik_l x_l} b^{\dagger}(x_l)|0\rangle \longrightarrow |\{n_j\}\rangle$$

For PBC the momenta satisfy
$$k_j=rac{2\pi}{L}n_j-rac{1}{L}\sum_{l
eq j} arphi(k_j-k_l)$$
 with $arphi(x)=2\arctan{(x/c)}$

The integer quantum numbers $\{n_j\}$ determine the momenta $\{k_j\}$, denote eigenstates $|\{n_j\}\rangle$

- Calculation of overlaps $\langle \{n_i\} | \Psi_i \rangle$ between initial state and Bethe eigenstates is very difficult!
 - Use Yudson representation
- Claim (Yudson; Goldstein, NA): Can rewrite the standard partition of the unity

$$I_N = \sum_{n_1 < \dots < n_N} \frac{|\{n_j\}\rangle \langle \{n_j\}|}{\mathcal{N}(\{n_j\})} \quad \text{ as } \quad I_N = \sum_{n_1, \dots, n_N} \frac{|\{n_j\}\rangle (\{n_j\}|}{\mathcal{N}(\{n_j\})} \quad \text{ anormalization} \\ \mathcal{N}(\{n_j\}) \quad \mathcal{N}(\{n_$$

in terms of Yudson states
$$|\{n\}\rangle = \int \mathrm{d}^N x \, \theta(x_1 > \dots > x_N) \prod_l^N e^{ik_l x_l} \, b^\dagger(x_l) \, |0\rangle$$

The Loschmidt Amplitude

• This allows the computation of overlaps and therefore of time evolution of $|\Psi_i\rangle$:

$$|\Psi_{i}(t)\rangle = \left[\frac{4\pi\hbar}{m\omega}\right]^{\frac{N}{4}} \sum_{n_{1},\dots,n_{N}} \frac{e^{-\sum_{j=1}^{N} \left[\frac{\hbar}{2m\omega}(1+i\hbar\omega t)k_{j}^{2}+ik_{j}\bar{x}_{j}\right]}}{\mathcal{N}(\{n_{j}\})} |\{n_{j}\}\rangle$$

The Loschmidt Amplitude:

$$\mathcal{G}(t) = \langle \Phi_i | e^{-iHt} | \Phi_i \rangle = \langle \Phi_i | \Phi_i(t) \rangle = \left[\frac{4\pi}{m\omega} \right]^{\frac{N}{2}} \sum_{n_1, \dots, n_N} e^{-\frac{1}{m\omega} \left[1 + i\frac{\omega}{2}t \right] \sum_{j=1}^N k_j^2} \frac{G(\{n\})}{\mathcal{N}(\{n\})}$$

with

$$G(\lbrace n \rbrace) = \det \left[e^{-ik_j(\bar{x}_j - \bar{x}_k) - i\theta(j-k)\varphi(k_j - k_k)} \right]$$

Other approach: Quench action Perfetto et al.

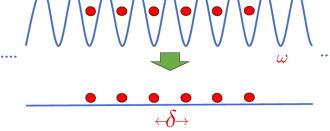
$$\mathcal{N}(\{n\}) = \det \left[\delta_{jk} \left(L + \sum_{l=1}^{N} \varphi'(k_j - k_l) \right) - \varphi'(k_j - k_k) \right]$$

- ullet Exact for any c,N,L. with ho=N/L and ω characterizing the initial state
- Displays **recurrences** : $au = (1 + 2\rho/c)^2 L^2/\pi\omega$

Quench of an optical lattice: gapless scenario

- **Quench protocol**: Release N bosons from a deep trap

 $ar{x}_j = j\delta, \ j = 1 \cdots N$

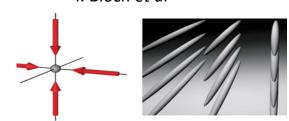


- Bosons well described by the Lieb-Liniger Hamiltonian

$$H_{LL} = \frac{1}{2m} \int dx \left[-b^{\dagger}(x) \partial_x^2 b(x) + c b^{\dagger}(x) b(x) b^{\dagger}(x) b(x) \right]$$

I. Bloch et al

Coupling: c > 0 repulsive, c < 0 attractive

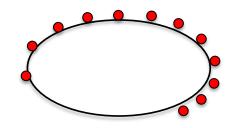


- Allow them to evolve $|\Psi(t)
 angle=e^{-itH_{LL}}|\Psi_i
 angle$ Localized peaks broaden and bosons begin to collide
- How to calculate evolution? Use partition of the unity

$$|\Psi_i(t)\rangle = e^{-itH_{LL}}|\Psi_i\rangle = e^{-itH_{LL}}\sum_n |n\rangle\langle n|\Psi_i\rangle = \sum_n e^{-iE_nt}|n\rangle\langle n|\Psi_i\rangle$$

The Loschmidt Amplitude (infinite volume)

Open system (partially filled lattice) $ho = N/L \ll 1/\delta$



(i.) **Repulsive interactions** Simplifies for strong repulsion $c\gg m\omega$

$$\mathcal{G}(t) = \frac{1}{\left[1 + i\frac{\omega}{2}t\right]^{\frac{N}{2}}} \sum_{P} (-1)^{P} e^{-\frac{\omega \alpha_{P}^{2}}{4\left(1 + i\frac{\omega}{2}t\right)}}$$

with
$$\alpha_P^2 = m\delta_{\text{eff}}^2 ||P||^2/2$$

$$\delta_{\text{eff}} = \left[1 + \frac{2}{c\delta}\right]\delta$$
 Effective increased distance due to repulsion

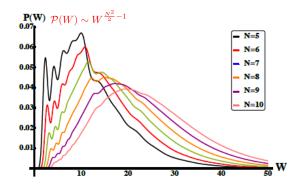
$$||P||^2 = \sum_{j=1}^{N} (j - P(j))^2$$
 Measures how many particles were exchanged

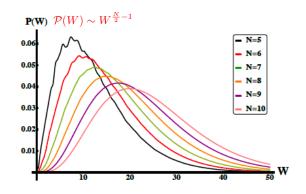
Sum over permutations corresponds to a sum over particles exchanging positions: e.g $||P||^2 = 2$ corresponds to a neighboring pair exchanging positions, $||P||^2 = 8$ could be 4 nearest neighbor exchanges or 1 next nearest neighbor exchange.

The Work Distribution (repulsive interactions, infinite volume)

The work distribution is obtained from the Loschmidt amplitude

$$P(W) = \int_{-\infty}^{\infty} \frac{\mathrm{d}t}{2\pi} e^{iWt} \mathcal{G}(t) = \frac{e^{-\frac{2W}{\omega}}}{W} \left[\frac{2W}{\omega} \right]^{\frac{N}{2}} \sum_{P} (-1)^{P} \frac{J_{\frac{N-2}{2}}(2\sqrt{\alpha_{P}^{2}W})}{\left[\alpha_{P}^{2}W\right]^{\frac{N-2}{4}}}$$





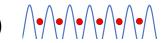
5 < N < 10

 $\delta/m = 2, \ \omega = 10$

Work distribution for repulsive bosons

Work distribution for free bosons

- For large value of W (short times) no dependence on interaction (no overlaps initially) $\sqrt{\bullet/\bullet/\bullet/\bullet/\bullet/\bullet}$



- For small values of W strong effect of interactions: $\mathcal{P}(W) \sim W^{\frac{N^2}{2}-1}$ as opposed to: $\mathcal{P}(W) \sim W^{\frac{N}{2}-1}$ Indeed, $|\mathcal{G}(t)|^2 \to 1/t^{N^2}$ vs. $|\mathcal{G}(t)|^2 \to 1/t^N$ as $t \to \infty$. In 1-d even weak interaction have strong effect.
- Average work $\langle W
 angle = \int \mathrm{d}W \, W \mathcal{P}(W) = N \omega/4 = \langle \Psi_i | H | \Psi_i
 angle$
- Exponentiated work (yields all moments) $\langle e^{-\beta W} \rangle = \left(\frac{1}{1+\frac{\omega\beta}{2}}\right)^{\frac{N}{2}} \left[1+\sum_{P \neq I} (-1)^P \frac{e^{-\frac{\omega\alpha_P^2}{2+\omega\beta}}}{\Gamma(N/2)}\right]$ cf Jarzynski equality $e^{-\beta\Delta F} = \langle e^{-\beta W} \rangle$

$$e^{-\beta\Delta F} = \left\langle e^{-\beta W} \right\rangle$$

The Work distribution (attractive interactions, infinite volume)

(ii.) Attractive interactions

For c < 0 there are bound states of n-bosons, $n = 2, \dots, N$ (momenta k form complex n-strings: $k_j = k + ijc/2, \ j = 1 \cdots n$

Using our generalization of Yudson representation, we find

$$\mathcal{P}_{c<0}(W) = \mathcal{P}_{unbound}(W) + \mathcal{P}_{bound}(W)$$

- $\mathcal{P}_{\mathrm{unbound}}(W)$ same expression as before with c o -c , so $\delta_{\mathrm{eff}} < \delta$ due to attraction.

Similar to super Tonks-Girardeau experiment, where one prepares system with large c>0 and then suddenly quenches to large c<0. Note, our expression valid for any c.

- $\mathcal{P}_{\mathrm{bound}}(W)$ is due to the strings, n- string contributing $\mathcal{P}_{n-\mathrm{bound}}(W) \propto |c|^{n-1} e^{-n|c|\delta}$ Transitions to states containing bound states are highly suppressed and in the true super-TG limit vanish entirely.
- For finite $\,c < 0\,$ new effects: bound states lower the energy and work distribution becomes non vanishing at negative values of $\,W$.

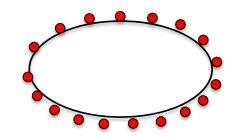
- Indeed, for a 2- string
$$\mathcal{P}_{\mathrm{bound}}(W) \approx N \sqrt{\frac{2\pi\omega}{m}} \frac{e^{-|c|\delta - \frac{2W}{\omega}}}{\Gamma\left(\frac{N}{2} - 1\right)} \left[\frac{2(W + \frac{|c|^2}{4m})}{\omega}\right]^{\frac{N}{2} - 2}$$
, non vanishing for $-|c|^2/4m < W$

The Work distribution (repulsive interactions, finite volume)

Start from a **fully occupied lattice** – boundary effects important

As before:

$$P(W) = \int_{-\infty}^{\infty} \frac{dt}{2\pi} e^{iWt} \mathcal{G}(t) = \frac{e^{-\frac{2W}{\omega}}}{W} \left[\frac{2W}{\omega} \right]^{\frac{N}{2}} \sum_{P} (-1)^{P} \frac{J_{\frac{N-2}{2}}(2\sqrt{\alpha_{P}^{2}W})}{\left[\alpha_{P}^{2}W\right]^{\frac{N-2}{4}}}$$



But boundary conditions enter when calculating $\, lpha_P^2 = m \delta_{ ext{eff}}^2 \|P\|^2/2 \,$

For instance when $\rho \ll \delta^{-1}$ the permutation P=(23...N1) gives $\alpha_P^2=m\delta_{\rm eff}^2N(N-1)/2$ however with PBC it gives $\alpha_P^2=m\delta_{\rm eff}^2N/2$

- Region $W \sim \langle W \rangle$ not affected by BC, dominated by few exchanges of particles average work is as before.
- Region $\ W \ll \langle W \rangle$ strongly affected, all permutation contribute

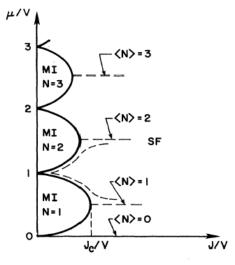
We have $\mathcal{P}(W) \sim W^{\frac{N}{2}}$ corresponding to $|\mathcal{G}(t)|^2 o 1/t^{N+2}$

As opposed to $\mathcal{P}(W) \sim W^{\frac{N^2}{2}-1}$ and $|\mathcal{G}(t)|^2 \to 1/t^{N^2}$ as before.

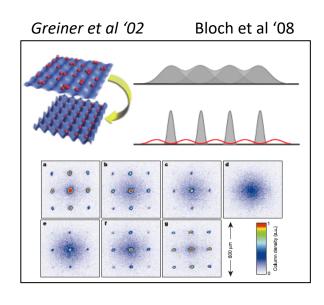
The strongly interacting particles have no space to expand into unlike previously, resulting in slower decay of the echo.

Quench of an optical lattice: gapped scenario

Quench system from an initial Mott state, the ground state of very high barriers (BH model)

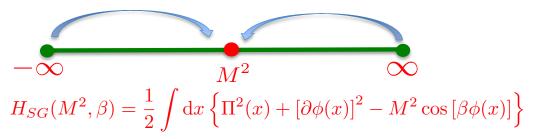


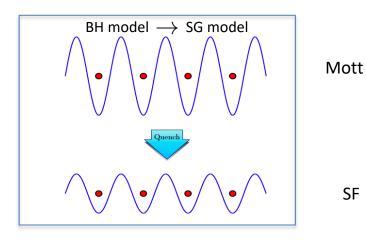
Fisher et al, 1989



Quench (e.g. SG as effective low-E theory of BHub)

$$H_{SG}(M^2 = \pm \infty, \beta) \to H_{SG}(M^2, \beta)$$





Another realization: pair of coupled one-dimensional condensates of interacting atoms (Gritsev et al '07)

Conclusions

- Quenches realizable in cold atoms experiments, work distribution measurable
- Calculated effect of quench on local correlation functions:
- RG flow in time
- Dynamical fermionization
- Calculated work distribution of a quench in a strongly interacting, gapless system.
- Studied bound state contributions to the work distribution.
 Showed they dramatically change the distribution and allow for negative values of work
- Showed that interactions strongly affect the universal edge exponents of the work distribution and also the long time decay of the Loschmidt echo
- Calculated for attractive and repulsive interactions, determined critical exponents at threshold

To do

- Connect to nonequilibrium thermodynamics: entropy production, fluctuation theorems
- Small and large systems increase role of fluctuations
- Quench across critical points, defect production, Kibble-Zurek dynamics, scaling and universality
- Time dependent quenches: slow drives, Floquet