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Non equilibrium dynamics of quantum systems -

Quantum Quench of Optical Lattices

Nonequilibrium — the new frontier : Old and new questions

Many experiments: cold atom systems, nano-devices, molecular electronics

Isolated systems — effects not washed out by coupling to environment

Fine control of parameters

Many systems described by integrable Hamiltonians

Standard nonequilibrium protocol: Quantum Quench

Sudden raise

e.g. release bosons in optical traps SF of potential Mott
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The Lieb-Liniger model The sine-Gordon model



Time evolution - Quench protocol in isolated systems

Quench protocol

* Isolated system with Hamiltonian H(t) = H[g(t)] depends on “work parameter” g(t)
* Initial state, |®,), typically ground state of H(0) = H[A]

* Evolve initial state under H(#') = H[g(t')]from ¢’ =0 to ¢ =t

g(t)
B=g(t) z
l H(g(t)

t)
A=49(0) A= g(0)

. t / / .
B,,t) = Te o HEW 1B} e |, 1) = 11| D,)
Sudden quench

* Process depends on initial state and on Hamiltonian
- Local characteristics: evolution of local observables, correlations, thermalization, ETH ..
- Global characteristics: quantum work, spread of entanglement ..



Time Evolution and the Bethe Ansatz

How to time evolve the initial state?

A given state |®() can be time evolved using partition of the unity 7=> " [F*)(7*
A

[@o) = > [FN)(EFN Do) —— [@g,t) = e [Dg) = > e [F)(F*| D)
A A

If H integrable — eigenstates |F*) are known via the Bethe-Ansatz

® Use Bethe Ansatz to study quench evolution and nonequilibrium

® New technology is necessary:

- Standard approach: PBC(orOBC) — Bethe Ansatz eqns — spectrum — thermodynamics

- Non equilibrium entails additional difficulties:

i. Compute overlaps (form factors) ii. Compute matrix elements iii. Sum over complete basis

Much work in this direction: quench action J. S. Caux et al, Essler et al, Calabrese et al

ii. Contour approach - does not required computation of overlaps



Yudson’s contour representation (infinite volume)

Instead of |®g) = Z |[FNY(FA®0) introduce (directly in infinite volume):
A

« Contour representation of |®g)

V. Yudson, sov. phys. JETP (1985)

By) = / AN | V) (F| o)

Computed S-matrix of Dicke model

with: |F'*) Bethe eigenstate, labeled by momenta {\}= \; ... Ay
|F>\) obtained from Bethe eigenstate by setting S — [ in one quadrant 6(¥) = 0(z1 > 22 > - .z )

Y contour in momentum space {\} determined by pole structure of S()\; — \,)

- In the infinite volume limit momenta{ A} are not quantized (no Bethe Ansatz equations)

- Can generalize approach to finite volume (Goldstein, NA), allows application to thermodynamic
systems with finite density

* The time evolution follows

D, t) :/dN)\ e TIENY A (FA D)
Y




Ultracold Atoms — the Lieb Liniger model

Gas of neutral atoms moving on the line and interacting with short-
range interaction V(xy — x3) = cd(x1 — 22)

c >0 repulsive {
c <0 attractive Bloch et al ‘08

Can be tune by Feshbach . e atoms ?n the ||ne. .

resonance —_—— = ————

Comment:

- Very short range interaction. Valid for low densities,
[ = L/N > ZVan der Vaals

- The description of physics depends on the scale of observation



Bosonic system — BA solution

The N-boson eigenstatestate (Lieb-Liniger ‘63)

IFA>:‘>‘17"'7/\N>:/
Y

i<j j Y

112850 =) [ ]9 b (y;)l0) :/ FA(yl“'yN):IbT(yj)!O)

* Eigenstates labeled by Momenta ) A real ¢V .
igenstates iabeie y viomenta 1y "y AN n-strings c<0 :
Ly >y
. : Ai — Aj —icsgn(y; — y,;) ’
* Dynamic factor: Y(hi —N\:) = J J — -
i — A +1
- The 2-particle S-matrix:  S;;(A\; — ;) = iy /\"7 i zz enters when the particles cross
AV
- poles of the S-matrix at: Ai = )\j +1c

* The energy eigenvalues

H’)\l7aAN>:ZJA? ‘A17'°'7AN>

- Thermodynamics: impose PBC — BA eqns —> momenta — Energy eigenvalues

- Dynamics (infinite volume): momenta unconstrained



Bosonic system - contour representation

The contour representation 2,) = / dV\ |[FM(F2,) takes the form:

~y

o) = / (@bl (a) - D @)l0) = FAy)
/ / /\ _>\ —ic Sgn(yz—y') HeiAj(yj—$j>bT(yj)‘0>
vy Ai — Aj —ic . v\
z<] J
(FA|®o)
A

A3 } ~

/\"

M T contour accounts for
strings, bound states

Repulsive c >0 Attractive c <0,

It time evolves to:

o TT N — A — e sgn(y; — yj) LNt QN (g —a
(I)o,t>=///>\€(x)<bo(x)n J/\'—)\-—(ic J He Aiteihi Wi—ei)pt (4 )|0)
x Jy ? J

1<J J

= Expression contains full information about the dynamics of the system




What to calculate?

e We shall study local correlation functions:
1. Evolution of the density ,O(ZC) = b ($)b(3:‘)
Cl (ZU, t) = <(I)0’ t|b]L (;C)b(aj”q)(), t> — /d$1d$N ‘@0(331, ey TN, t)‘Q Z 5($ - Zl?j)

J

- The probability to find the bosons at point & at time ¢ if at
time t = O they started with wave function @ (xq, .., 2n)

- Can be measured by Time of Flight experiments

- competition between quantum broadening and attraction

2. Evolution of noise correlation

_ (Do, tlp(x)p(y)|Po, 1)
Ca(,y,t) = Crlz )Ch(yt)

- Time dependent Hanbury Brown - Twiss effect



Evolution of a bosonic system: density

- Consider an initial state:

@0(331,33‘2) —

- Its evolution is:

q)o(y1,y2,t):/q)o($1,ﬂ32)

- Compute the evolution of the density

i. Initial condition:

1 (21 %+ (za+a)?
T 202
(ro?)a
2 2 .
1' 67;(1/1;»;01) +i(y2—w2) i
47t

a >0

p(y=0,1)

L

0s 10

No interaction effects- small initial overlap, then

density too low

4

p(Q,1)
il. Initial condition: a << o

l-’ o o
10 —\ 1
08 — l‘:::f-., — =0
osf 1\
02} —

— 6 lfO —— l.r_ ——

Strong interaction effects: initial overlap

i [1— evVmitf(ys — y1)6§a2(x’y’t>erfc(i —Lia(@,y,) )]

Vi



The Hanbury Brown — Twiss effect

- Hanbury brown-Twiss effect for two bosons

Bloch et al.
RMP 08

Hanbury-Brown Twiss effect

Time dependent Hanbury Brown - Twiss effect

- Time dependent

- Many bosons

- More structure: main peaks, sub peaks
- Effects of interactions?

= repulsive bosons evolve into fermions

e attractive bosons evolve to a condensate

Measure: Co(x1,x2,t)

-Two stars: a, b

@ > [a)
® >s)

Free bosons

Cy(x,—x) ~ coszx

Free Fermions C2(7, —x) ~ —cosz

(a)

S — matrix

|

\

\

|
\
|
\
\

(b)




Evolution of repulsive bosons into fermions: HBT

Density - Density correlation: long time asymptotics - repulsive: (iyer, NA)

® Bosons turn into fermions as time evolves (forany ¢ > 0)

® Can be observed in the noise correlations: (dependence on ¢ only via £ = :13/275 )

Co(z1, 22,t) = C2(&1,&2) = <§ZS§§?§§B> — 1,

c/a=0,.3,---,4

Fermionic correlations evolve

v

® Fermionic dip develops for any repulsive interaction on time scale set by 1/c2



Evolution of a bosonic system: noise correlations

3 particles

5 particles -

10 particles

Noise correlations — starting from a lattice

Repulsive bosons

02(65 _g)

C2(§a _5)

Fermionic dip as

Structure emerges at

Ea=o0

2 particles

central peaks increase with time
- weight in the bound states increases

3 particles

Attractive bosons

o0t

/

Blue  -short times
Violet - longer
Magenta - longest

a

Blue  -shorttimes
Violet - longer
Magenta - longest

~£a

peaks diffuse — momenta redistribute




Evolution of a bosonic system: noise correlation

Noise correlations — starting from a condensate:

Repulsive bosons

Cal f-f

— \\If —

Two (blue) and three bosons,

%

Attractive bosons

Three bosons, at times:

tc? = 20;40; 60



Dynamic Fermionization

Long time asymptotics - repulsive interaction Recall: 190.1) = / dN e Y ) (F @)

® Bosons turn into fermions as time evolves (for any ¢ > ()) D. Jukic et al ‘08
. . Ai — Aj —ic sgn(y; — Y A2 "
@0.1) = ///9(37)(130(37)‘___ o 190~ Yi) T oo e - RIL0
1<J J
Ai—A,‘—ic\/isgn Yi —Yi) i A2\ (s — s ;
= /// J : ( J>€ SN (Y —x5) /v —[bT(yj)\(D

zJy A; — )\j — ZC\/;5 hj

R /// (#)® (#)e ™ =X X =) VT T sgn(ys — y;) ] b (w5)10)
J

1<J
— —7Hf/ A, 0(Z) Do (% H cf(z;)|0).
where
= — [ cf(2)9%c(c)

- In the Iong time limit repulsive bosons for any ¢ > () propagate under the influence of
Tonks — Girardeau Hamiltonian (hard core bosons ~free fermions)

A, antisymmetrizer

- Argument valid for any initial state ¢

- Experimentally observed recently - Greiner Group 2015, Weiss group 2020

® Scaling argument fails for attractive bosons (instead, they form bound states)



Conclusion: coupling constant “effectively evolves” with time

Evolution of a bosonic system

4

t ~ In(Dy/D)

Condensed bosons i
( ¢ ) — 0 c<0 c= 0 ¢ > 0 oo (Free ferrr'n'ons)
bound state bosons perturbations W fast bosons
dominate e.g. non-local interaction escaping,
* Whatis beyond c =0c0? Thermalization
c ,/:} e=10 ."',:\". oo
: L :: &> — ,_:_\’_j_ pre-thermalization (Iyef; NA)
I‘\_./' __,---"'___-_ \ o,
_ - c=0 c>0 ¢<0
llq-_“__ \ . -
:;":1]-i@;;":':jr':] thermal state
* Fermionization also occurs on the lattice: Bose # d -9:'.:"
Hubbard model (not integrable) e

Observed experimentally

(Hhu=07 (n)

(u=14

(Greiner et al. “15)

(yu=24 (IV)u=5.1
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Evolution to NESS: Domain wall (no thermalization)

Example: time evolution from a non-trans. invariant initial state (no equilibration)
—xz? /o

W (t =0)) = H/oo ¢ (z + j1) b () |0) with: ¢ (z) = (ro/2) /2

Domain wall:
strongly breaks
trans. Invariance

p(,{l’,‘, t) > (G Goldstein, NA )

1 = —72 2/o0+40 s2 /12
7 (1+Ze (8¢%/o+0/2)s? /1 cos(27rsw/l)) T —\/8t2 /0

- System evolves to NESS

Outside the cone

Lieb-Robinson
bqund/ O(xo,t) — ONESS'@?O) s=1
* ’ 1/1 4
N L/ ” (5 — —7;) Nonequilibrium steady state (NESS) oKL |CC| <Lt
¢ Independent of X,t - interaction effects
I (%Erfc (ﬁ) +
—i—%e‘mz/A (%ﬁLAErfc (LA) —le” Z/A) x ~1
A=8t*/o+0/2

—I—EE(I—lEr c(i))Er c(— )
2 277 VA f vA Crossover regime
x> /82 /o

L0
Outside the cone



Evolution to NESS: Domain wall (no thermalization)

The domain wall quench:
- efft t vefft

- Nonequilibrium Steady state (NESS) : order of limits [, — oo VS. t — 00
- Evolution along space-time rays =/t = &

- RG flow in time, dynamical fermionization

1 > 2.2 2
On the left, outside the “light cone, p(x,t) = p 1+ Z oD g ( 7;3:13)]
s=1

Same result as from TG gas (Tonks-Girardeau ¢ — OCQ ), cf Hanbury Brown — Twiss effect



Global Aspects: Nonequilibrium Thermodynamics

Quantum work

* During the quench energy is pumped into the system- W = £;.., — E : work is done

initial *

First law of thermo” dFE = d() + dWW butsystemisolated: () = ( so dE = dIV

Hﬁnal
vy | i
Hinitial, |95)

Work — random variable : involves two measurements - initial and final energies,
- at initial time - yielding |®;) and€;  with probability P, = 1
- at final time - yielding|V,,) andE,, with probability ;.. = |[(¥,,|®;)|?

* For a sudden quench the work distribution: (Talkner et al 07 “Not an observable” )

P(W) = 25 (W — (En — €)) ‘<‘1’n@z>‘2



Nonequilibrium Dynamics — Loschmidt amplitude

* Claim: Work distribution is related to Loschmidt Amplitude (Talkner et al 07)

) = (D, e—z’Ht d. Related concepts:
g( ) < Z‘ ’ Z> Return Probability
Survival probability
e < qt . _ Persistence
P(W) = / L piwericitg
oo 2T

 The Loschmidt amplitude probes the full Hilbert space of states

. | @) D
G(t) = (] e D) = ZG_ZE”t (U, |®;)|? »—‘/TT\&D ‘

n N
starting from and weighted by overlaps with initial state |3,) \ it |D;)

Observation of DQPT in Ising model

@ "r i

I
M) = Tim — log|G(t) 4 \f“v
()—Ngnocﬁ og |G(t)] Jurevic et Te e

al 17 ® 7 4

* May exhibit singularities Dynamical Quantum Phase Transition (Kehrein, Heyl 18)
similarities to thermodynamic phase transitions, Fisher &Lee-Yang zeroes

-~

DQPT depends on initial state, not only on the Hamiltonian

A | . -~ Saanr
e
0 ol 1 n



Nonequilibrium Thermodynamics -Work done in a quench

« P(W) has the form of the spectral function:  ;,; Gombassi,
Palmai, Sotiriadis,

- Definedfor W > §F = E, — ¢, Mussardo, Calabrese,
Goold ....: ‘08-"18

- Adelta function at threshold 17/ = §F
weighted by the fidelity 7 — |(v,| ®;)|? transition from the initial state to the ground state of

- If H is gapped and translation invariant - continuum of excited states into which |®;) can transition
with W = 2m + 0 F lowest threshold for the continuum.

Power like behavior at threshold P(W) ~ (W — 6FE — 2m)(W — JE — 2m)“

Similarly the four-particle emission continuum threshold W = 4m + 0F

It there are bound states 171; then delta function may appearat W = m; + JF

* Work distribution directly measureable

* Reversible and irreversible processes, entropy production, spread of entanglement

* Fluctuation theorems :  Jarzynski ‘97 (.~BW) _ .~BAF  Cohen-Galavotti ‘95 PP(<5;)6;;
Crooks ‘99 I{f<<‘%:—A and more.

- relate equilibrium and nonequilibrium, relate forward and backward evolution



Eigenstates and Yudson states

* The exact eigenstates of the Lieb-Liniger model — study finite size
N

— k; —icsgn(x; — x;) :
N J v J tkixy 1T '
kb = [ ¥ 1" B [ @l0) — )
1,7=1 =1
i<j
For PBC the momenta satisfy| k; = —nj — — Zg@ (kj — kp) with (z) = 2arctan (x/c)
l#J

The integer quantum numbers {n;} determine the momenta {%;}, denote eigenstates |{n,})

* Calculation of overlaps ({n; }|W;) between initial state and Bethe eigenstates is

very difficult!
- Use Yudson representation

Claim (Yudson ; Goldstein, NA) : Can rewrite the standard partition of the unity

normalization

N({n}) = 1t{SA<L>Z (k; A/> @' (k; m}

) {3, ) ) {n, ) ({n, )
= Y Ny T X TR

N

in terms of Yudson states |{n}) = /dNa: O(x1 > - >an) [ [ €001 () |0)
l

ny<---<nn



The Loschmidt Amplitude

* This allows the computation of overlaps and therefore of time evolution of |¥;) :

N 3 (ihwt) k2 +ik; 2]

2mw

Arh] 1 e =1
OB NDS i )

n14...,MN

The Loschmidt Amplitude:

N
» Am | 2 _ 1 e s k2 GH{n})
G() = (@]~ o) = (@:(0) = | 27 o~ S
with
Other approach: Quench action
G({n}) = det {e_ikj(jj_fk)_i9<j_k)9”(kj_k’“)} Perfetto et al.

N({n}) = det [5.7%: (L +) ¢ (k- kz)) — @' (kj — kk)]

=1

* Exactforany c, /V, L. with p = N/L and w characterizing the initial state

* Displays recurrences :  + — (1 + 2p/c)2 L?/mw




Quench of an optical lattice: gapless scenario

- Quench protocol: Release |V bosons from a deep trap Tj = j5, j=1---N
N N mw 1 mw 2 o \eo/ \o/ \@ \@/ \®
W,) = /d a;H [—} e~ 5 (2j—75) bT(xj)‘O>
it T = L
® ®© ¢ ¢ o o
- Bosons well described by the Lieb-Liniger Hamiltonian 0
1
. _pt 2 T T
Hyp, o /dm[ b' (x)02b(z) + cb'(x)b(x)b' (x)b(x) | ! Bloch et al

Coupling: ¢ > 0 repulsive, ¢ < () attractive

- Allow them to evolve | (¢)) = ¢ /22 |1;) Localized peaks broaden and bosons begin to collide

- How to calculate evolution? Use partition of the unity

Ty (t)) = e "Her |0y = e~ itHer Z n)(nT;) = e Frtin) (n|T;)



The Loschmidt Amplitude (infinite volume)

Open system (partially filled lattice) p = N/L < 1/6

(i.) Repulsive interactions Simplifies for strong repulsion ¢ > mw

1 o (J.)Oé2p
a(1+iw
G(t) = = > (—1)Pe 0y
1444t P
i 2 _ 2 2
with o}, = mdzg| P|*/2
Octt = ll T (151 0 Effective increased distance due to repulsion
N
IPIIP=> (- P(j)” Measures how many particles were exchanged

J

Sum over permutations corresponds to a sum over particles exchanging positions: e.g ||P|*> =2
corresponds to a neighboring pair exchanging positions, ||P||? =8 could be 4 nearest neighbor
exchanges or 1 next nearest neighbor exchange.



The Work Distribution (repulsive interactions, infinite volume)

* The work distribution is obtained from the Loschmidt amplitude

2 N 2
> dt . e Tow 12 Jn_2(2y/aZW)
pov) = [ Stewiga = S (2T S eyr s
> v o3
BW) p(17) ~ W pw) P(W) ~ WE!

5 <N<LI10

d/m=2, w=10

0.0}

10 20

Work distribution for repulsive bosons Work distribution for free bosons

- For large value of 1 (short times) no dependence on interaction (no overlaps initially) /\’A‘A‘/\'/\‘/\'/\
- For small values of 17" strong effect of interactions: P(17) ~ W -las opposed to: P(IW) ~ w21
Indeed, |G(#)]> — 1/t" vs. [G(t)]*? — 1/t ast — 00.In 1-d even weak interaction have strong effect.

- Average work () = / AW WP(W) = Nuw/d = (U, |H|T,)

N 2

wap

L 3 R

P#I

cf Jarzynski equality

_aw A
- Exponentiated work (yields all moments) (¢ ") = <1+ w;> e IAF — (=B



The Work distribution (attractive interactions, infinite volume)

(ii.) Attractive interactions

For ¢ <0 there are bound states of n -bosons, n =2.--- . N
(momenta i form complex n- strings: kj =k + ije/2, j=1---n

e Using our generalization of Yudson representation, we find

7Dc<0(I/V) — 73Umboumd(I/V) + Pbound(W)

- Punbound (W) same expression as before with ¢ — —c, so d.x < ¢ due to attraction.

Similar to super Tonks-Girardeau experiment, where one prepares system with large ¢ > 0
and then suddenly quenches to large ¢ < 0 . Note, our expression valid for any c.

- Pbound(W) is due to the strings, n - string contributing 7, _ouna(W) \C‘nflefnlc\é

Transitions to states containing bound states are highly suppressed and in the true
super-TG limit vanish entirely.

- For finite ¢ < 0 new effects: bound states lower the energy and work distribution becomes
non vanishing at negative values of |}/.
J-_2

(W + i<hi
( ) , nonvanishing for —|c|? /am < W

w

2mw e~ leld— %"

- = i 73)01111 I/V ~ N
Indeed, for a 2- string Puouna () m T(E_1)

= There is a non zero probability that work can be extracted from the
system. This does not violate the 2nd law of thermodynamics since (1) > 0 Jarzynski ‘11



The Work distribution (repulsive interactions, finite volume)

Start from a fully occupied lattice — boundary effects important

As before:

Pov) = [ sEevia = |2 =

— 0

But boundary conditions enter when calculating a5 = mdZ;|| P||* /2

For instance when p < § ' the permutation P = (23..N1) gives a3 = méZzN(N — 1)/2

P p—
however with PBC it gives a2 = md%;N/2

- Region W ~ (W) not affected by BC, dominated by few exchanges of
particles average work is as before.

- Region 11/ < (V) strongly affected, all permutation contribute

We have P(W) ~ W= corresponding to \g(t)ﬁ BN 1/1;N+2

As opposed to p(i) ~ 1w 1 and |G(¢)|2 — 1/¢Y" as before.
The strongly interacting particles have no space to expand into unlike previously, resulting in slower decay of the echo.



Quench of an optical lattice: gapped scenario

/v
A

» —EiN>=3
N=3

N> =2
MI I S
Ne2 J o g

7
z

-
R KW=
MI S\

N=1 -

I KN>=0

Jo/ V Y%

Fisher et al, 1989

Quench (e.g. SG as effective low-E theory of BHub)
HSG(M2 — fEOO, 5) — HSG(M27 5)

.J / .ﬁ O
— 0 M2 O

Hsa(M*,8) = 5 [ do {IP(w) + 06(a))” - M? cos [59(x)}

Greiner et al ‘02

Bloch et al ‘08

d
¢ @ o 0
o @ océ‘ o ' :'Q- . *
° o] . . ©° . » "
e f 1
. o e |1
- € E
: e | § | 3
0

Quench system from an initial Mott state, the ground state of very high barriers (BH model)

Mott

SF

Another realization: pair of coupled one-dimensional condensates of interacting atoms (Gritsev et al ‘07)



Conclusions

* Quenches realizable in cold atoms experiments, work distribution measurable

e Calculated effect of quench on local correlation functions:
- RG flow in time
- Dynamical fermionization

e Calculated work distribution of a quench in a strongly interacting, gapless
system.

» Studied bound state contributions to the work distribution.
Showed they dramatically change the distribution and allow for negative
values of work

 Showed that interactions strongly affect the universal edge exponents of
the work distribution and also the long time decay of the Loschmidt echo

e Calculated for attractive and repulsive interactions, determined
critical exponents at threshold



Connect to nonequilibrium thermodynamics: entropy production, fluctuation
theorems

* Small and large systems - increase role of fluctuations

Quench across critical points, defect production, Kibble-Zurek dynamics,
scaling and universality

 Time dependent quenches: slow drives, Floquet



