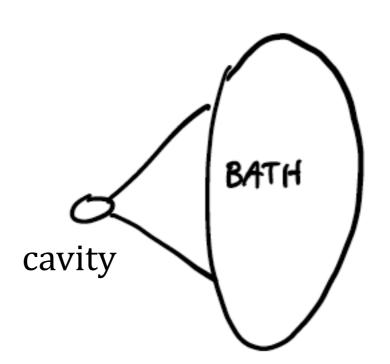
Dynamical Mean-Field Theory in Non-Equilibrium Many-Body Statistical Physics: Aging, Glassy Dynamics, Ecosystems and High-Dimensional Chaos

Giulio Biroli Ecole Normale Supérieure **Paris**

The two key ingredients of DMFT

- 1. Identify the correct degree of freedom and treat the rest of the system as a bath
- 2. The bath is statistically identical to the singled-out degree of freedom: self-consistency



An example: mean-field spin glasses

$$\dot{S}_{i} = -\frac{\partial V}{\partial S_{i}} + \sum_{(k+1)} J_{ik} S_{ik} + \underbrace{\xi_{i}(t)}_{N \gg 1}$$

$$\overline{J_{ik}^{2}} = \frac{1}{N} ; V(s) = (S^{2} - 1)^{2} ; < \underbrace{\xi_{i}(t)}_{\xi_{i}(t)} \underbrace{\xi_{i}(t')}_{S_{i}(t')} > = 2TS_{ik}S_{i}(t-t')$$

Solve the dynamics of the "bath" as a function of the cavity

An example: mean-field spin glasses

$$\dot{S}_{i} = -\frac{\partial V}{\partial S_{i}} + \sum_{i \in \{ \neq K, i \}} J_{Ke} S_{e} + J_{Ki} S_{i}^{2} + \underbrace{\xi_{i}(t)}_{K}$$

$$\dot{S}_{i} = -\frac{\partial V}{\partial S_{i}} + \sum_{i \in K} J_{ik} S_{i}^{2} + \underbrace{\xi_{i}(t)}_{K}$$

$$\dot{S}_{i} = -\frac{\partial V}{\partial S_{i}} + \sum_{i \in K} J_{ik} S_{i}^{2} + \underbrace{\xi_{i}(t)}_{K}$$

Noise: Gaussian force Dissipation: Onsager reaction term

$$\dot{S}_{i}(t) - \int_{0}^{t} ds \, R(t,s) S_{i}(s) = -\frac{\partial V}{\partial S_{i}} + \xi_{i}(t) + \mathcal{D}_{i}(t)$$

$$R(t,s) = \frac{1}{N} \sum_{k} \frac{SSk(t)}{Shk(ts)} \Big|_{h=0}$$

$$\langle 2_i(t) 2_i(s) \rangle = \frac{1}{N} \sum_{k} Sk(t) Sk(t) = C(ts)$$

DMFT in statistical physics

1. Identify the correct degree of freedom and treat the rest of the system as a bath

The effect on the cavity on the rest of the system treated at first order in perturbation theory (exact in the mean-field limit)

Generalized friction kernel and thermal noise

2. The bath is statistically identical to the singled out degree of freedom: self-consistency

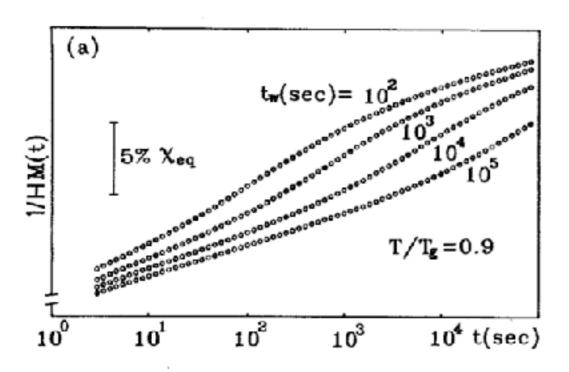
Self-consistent stochastic non-markovian dynamics

Sompolinsky, Zippelius PRB 1982 Mézard, Parisi, Virasoro, Spin Glass and Beyond

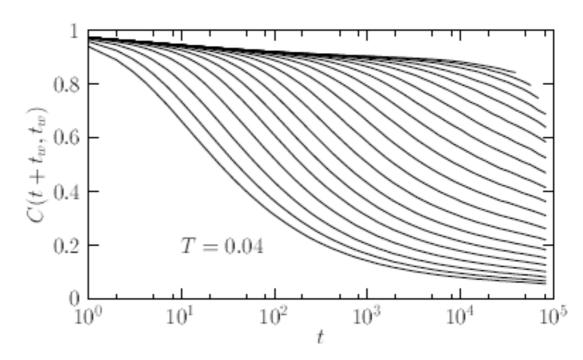
Quantum: Georges, Kotliar, Krauth, Rozenberg, RMP 1996

Aging in spin-glasses

At low temperature spin-glasses display a very slow off-equilibrium dynamics



Zero-Field cooled susceptibility from Zeidlindh et al PRB 87



Heisenberg spin-glass from Berthier Young PRB 04

DMFT for aging in spin-glasses

• Ergodicity breaking transition: the system remains always out of equilibrium below Tc.

T>Tc thermalisation at long times, system and bath verifies FDT

T<Tc aging dynamics of the system and the bath

Cugliandolo, Kurchan, PRL 1993;...

Franz, Mezard 1994,...

• Infinite hierarchy of time-scales and time-sectors: effective temperatures out of equilibrium, and dynamical version of Parisi Full Replica Symmetry Breaking

Cugliandolo, Kurchan PRB 1994; JPSJ 2000,...

Altieri, Cammarota, Biroli J. Phys. A 2020

Generalisation to quantum systems

Cugliandolo, Lozano PRB 1999 Biroli, Parcollet PRB 2002

DMFT of the glass transition

Molecular liquids display a dramatic slowing down associated to the glass transition The relaxation time increases by 14 orders of magnitude

$$H = \sum_{i} \frac{P_{i}^{2}}{2m} + \sum_{(i\neq 3)} V(R_{i} - R_{3})$$

$$m\ddot{R}_{i} = -\sum_{s(\mu)} \nabla V(R_{i} - R_{s})$$

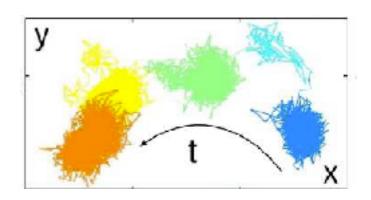
DMFT exact in the large dimensional limit Challenge: off-lattice system

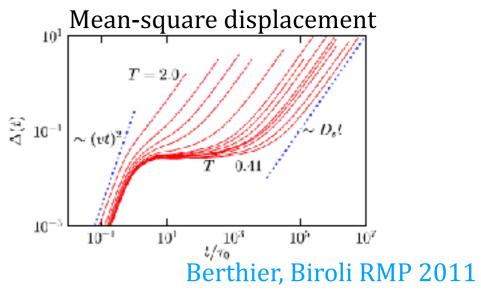
$$J \rightarrow \infty \qquad \forall i(t) = Ri(t) - Ri(0)$$

$$V(R) = \overline{y} \left(J(\frac{R}{e} - i) \right)$$

$$U^2 \sim \frac{1}{2}$$

N interacting particles in the continuum





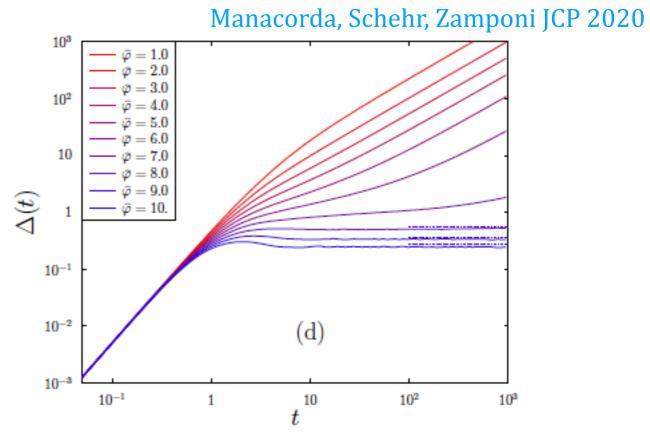
Cavity degree of freedom $U_{i,a}(t)$

DMFT of the glass transition

 Exact solution of infinite-d many particle dynamics

> Maimbourg, Kurchan, Zamponi PRL 2016 Agoritsas, Maimbourg, Zamponi J Phys A 2019 Chen, Biroli, Reichman, Szamel 2021

 Glass transition at Td with the same properties of Mode-Coupling theory



 Detailed description of glassy dynamics but fails to obtain super-Arrhenius behavior (non-perturbative in 1/d)

DMFT for many-species ecosystems

"Traditional" ecosystems

"Modern" ecosystems

MANY INTERACTING SPECIES -> STAT PHYS FOR NON CONSERVATIVE FORCES

Generalized Lotka-Volterra
$$\frac{dN_i}{dt} = N_i \left[\sum_{i=1,...,N} (K_i - N_i) - \sum_{i=1,...,N} \alpha_{i,i} N_i \right] + \lambda_i$$

$$\lambda_i = \sum_{i=1,...,N} (K_i - N_i) - \sum_{i=1,...,N} \alpha_{i,i} N_i = 0$$

DMFT exact in the Mean-Field Disordered Version

Roy, Bunin, Biroli, Cammarota, JPA 2019

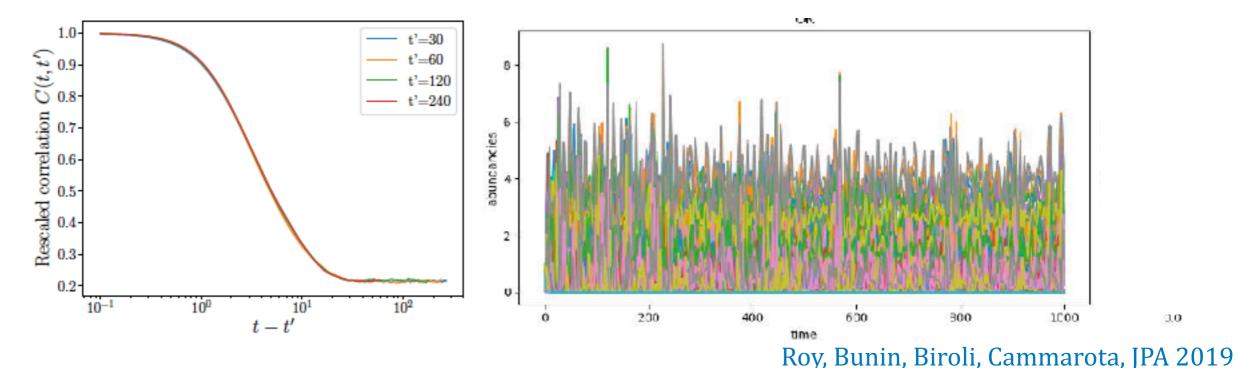
$$q_{i3}^2 = \frac{\sigma^2}{N}$$
; $q_{i3}q_{3i}^2 = \chi \frac{\sigma^2}{N}$; $q_{i3} = \frac{\mu}{S}$

R. May 1972 Bunin, PRE 2017 Barbier et al PNAS 2018

Chaos & Endogeneous fluctuations

Can endogenous fluctuations survive in a large interacting ecosystem? "Are ecological systems chaotic—and if not, why not?" Berryman, Millstein 1989

Transition from one equilibrium phase to stable high-dimensional chaos with immigration



Without immigration chaos is metastable for many communities and with diffusion

Roy, Barbier, Biroli, Bunin PLOS 2020 D. S. Fisher, A. Agarwala, M. Pearce PNAS 2019

Conclusion

DMFT in classical statistical physics: a powerful method to analyze and unveil complex dynamical phenomena

Many different applications

- *Aging dynamics in spin-glasses*
- Very slow relaxation and glass transition
- Chaotic dynamics in large interacting ecosystems
- Chaos and learning in neural networks
- Optimization algorithms in computer science
- Strongly correlated electrons in equilibrium and driven

DMFT for many-species ecosystems

"Traditional" ecosystems

"Modern" ecosystems

MANY INTERACTING SPECIES

- •Communities formed by individuals belonging to different species.
- •Interactions between individuals intra and inter species.
- •Competition for resources--Cooperation.
- •Abundances of species vary dynamically due to the births and deaths.

Many interesting open questions

•Can endogenous fluctuations survive in a large interacting ecosystem?

Endogenous versus exogenous fluctuations "Are ecological systems chaotic—and if not, why not?" Berryman, Millstein 1989