review: V. Bulchandani, SG, E. Ilievski, JSTAT 2021, 084001 (2021)

J. De Nardis, SG, R. Vasseur, B. Ware, PRL **127**, 057201 (2021) J. De Nardis, SG, R. Vasseur, B. Ware, arxiv:2109.13251

jacopo de nardis romain vasseur brayden ware

superdiffusion, subdiffusion, integrability

Sarang Gopalakrishnan (Penn State)

quasiparticle picture of integrable systems

One-dimensional elastic scattering

constraints (momentum + k.e.)

If particles have equal mass:

$$v_1^f = v_2^i, v_2^f = v_1^i$$

Simply exchange velocities

Set of velocities $\{v\}$ preserved

Three-body collisions relax {*v*} *unless* they factorize (Hubbard/Heisenberg)

quasiparticle picture of integrable systems

One-dimensional elastic scattering

constraints (momentum + k.e.)

If particles have equal mass:

$$v_1^f = v_2^i, v_2^f = v_1^i$$

Simply exchange velocities

Set of velocities $\{v\}$ preserved

Three-body collisions relax {*v*} *unless* they factorize (Hubbard/Heisenberg)

Quasiparticle picture

direct calculations of dynamics in integrable systems are hard

workaround: quasiparticle picture/ generalized hydrodynamics

[Castro-Alvaredo et al., Bertini et al. (2017), cf. Sachdev (1990s)]

quasiparticle picture of integrable systems

One-dimensional elastic scattering

constraints (momentum + k.e.)

If particles have equal mass:

$$v_1^f = v_2^i, v_2^f = v_1^i$$

Simply exchange velocities

Set of velocities $\{v\}$ preserved

Three-body collisions relax {*v*} *unless* they factorize (Hubbard/Heisenberg)

Quasiparticle picture

direct calculations of dynamics in integrable systems are hard

workaround: quasiparticle picture/ generalized hydrodynamics

[Castro-Alvaredo et al., Bertini et al. (2017), cf. Sachdev (1990s)]

information spreads ballistically...

- Changing the velocity of one trolley modifies all downstream trajectories
- Quasiparticle picture captures entanglement growth [Alba, Calabrese, PNAS (2017)]
- In an initial thermal state, collisions give rise to diffusive broadening of operator fronts [SG, Huse, Khemani, Vasseur, PRB (2018)]

the case of the xxz spin chain as $T \rightarrow \infty$ $H_{XXZ} = \sum_{i} (\sigma_i^x \sigma_{i+1}^x + \sigma_i^y \sigma_{i+1}^y + \Delta \sigma_i^z \sigma_{i+1}^z)$

ballistic spin transport $\sigma_s(\omega): \qquad \mathcal{D}(\Delta)\delta(\omega) + ??$

free

Heisenbergeasy-axissuperdiffusiondiffusive spin transport $\omega^{-1/3}$ $\sigma_0(\Delta)$

- Only affects spin dynamics
- Energy transport is always ballistic: energy current commutes with *H*
- Never mind the transition, what about the *phases*?

easy-plane

General principle: elementary excitations in integrable systems remain **stable** (but highly **renormalized**) in thermal states

review: Bastianello, De Luca, Vasseur, arXiv:2103.11997

studying integrability-breaking

How we break integrability:

$$H = H_0 + \sum_i \eta_i(t) O_i, \quad \langle \eta_i(t) \eta_j(0) \rangle = \gamma \delta_{ij} \delta(t)$$

- Why?
 - Noise-averaged dynamics is given by a quantum channel with dephasing
 - Operator entanglement growth stays under control at all times
 - Theoretically simple: less kinematics to worry about
- Results consistent with nonintegrable Hamiltonian simulations with TEBD (but these become very expensive very fast)

easy-axis phase

why is there no ballistic transport?

- Low-temperature state in the ferromagnet: domains of various sizes
- Because of U(1), domain can only move all at once
- Small domains can move, large domains are immobile (exponentially suppressed *v*)
- What happens when a magnon crosses a large domain?
 - Diffusion. Large domain shifts
 - **Dressing.** Magnon stripped of its spin (but only precisely at half filling)

intuitive argument for diffusion

- Magnon moves a distance *vt* in time *t*
- Dressed / screened magnetization of magnon over this scale:

$$m^{\rm dr} \sim 1/\sqrt{L} \sim 1/\sqrt{vt}$$

Amount of charge transported [cf. Medenjak, Prosen, Karrasch, PRL (2017)]:

$$\langle \delta(m^{\mathrm{dr}}x)^2 \rangle \sim \frac{v^2 t^2}{vt} \sim vt$$

away from $\Delta \gg 1$

Quasiparticles labeled by index *s*; also $\Delta = \cosh(\eta)$ *

$$\rho_s \sim \exp(-\mu s)/s^3$$
, $v_s \sim \exp(-\eta s)/s$, $m_s \sim \min(\mu s^2, s)$

Ilievski, De Nardis, Medenjak, Prosen, PRL (2018) Medenjak, Karrasch, Prosen, PRL (2017)

Key idea: * 2.0 $\langle \delta(q_{\rm eff}x)^2 \rangle \sim \sum_s \rho_s (v_s t)^2 \langle m_s^2 \rangle_{\mu = 1/\sqrt{v_s t}}$ 1.5 \square 1.0 Closed-form expression with prefactors: * 0.5 ∞ ٦ $\mathbf{0}$ · 1 Г

$$D = \frac{2\sinh\eta}{9\pi} \sum_{s=1}^{\infty} (1+s) \left[\frac{s+2}{\sinh\eta s} - \frac{s}{\sinh\eta(s+2)} \right]$$

SG, Vasseur, PRL (2019) De Nardis et al., PRL (2019)

away from integrability

- Naive guess 1: already diffusive, integrability-breaking should do nothing
- Naive guess 2: $vt \to \sqrt{Dt}$ so

away from integrability

- Naive guess 1: already diffusive, integrability-breaking should do nothing
- Naive guess 2: $vt \to \sqrt{Dt}$ so

- Limit $\gamma \to 0$ is subtle / discontinuous for all $\Delta > 1$
- For $\Delta = \infty$, subdiffusion at all γ [Singh et al., arXiv:2108.02205]

isotropic point

superdiffusion at the isotropic point

 Ultimate origin:
 large-amplitude Goldstone modes above a ferromagnet

- Critical exponent for Goldstone modes z = 2, speed ~ 1/size
- Integrability means these modes survive but get thermally "dressed"

superdiffusion at the isotropic point

 Ultimate origin:
 large-amplitude Goldstone modes above a ferromagnet

- Critical exponent for Goldstone modes z = 2, speed ~ 1/size
- Integrability means these modes survive but get thermally "dressed"
- General scaling form for correlation functions $C_{\text{anom.}} \sim \mu^{\delta} C(x \mu^{\nu}, t \mu^{\nu z})$
- Crossover length set by "resolving" magnetization: $\mu \sim 1/\sqrt{\xi}$, $\nu = 2$
- ✤ Largest Goldstone has size $1/\mu$
- Speed of Goldstone modes at that scale:

$$v \sim \mu \Rightarrow t = \mu^{-3} \Rightarrow z = 3/2$$

another framing

- Density of size-s Goldstones: $\rho_s \sim 1/s^3$ [forced by susceptibility sum rule]
- Each Goldstone is screened when it sees a bigger Goldstone

Mean free path against screening: $\ell_s^{-1} \sim \sum_{s'>s} \rho_{s'} \sim 1/s^2$

Screening time:
$$\tau_s = \ell_s / v_s \sim s^3$$

a.c. conductivity from Kubo

$$T\sigma(\omega) = \int dt \langle J(t)j(0) \rangle \sim \sum_{s} \int dt \rho_s v_s m_s e^{-t/s^3} \sim \omega^{-1/3}$$

superuniversality of superdiffusion

- Very similar numerical results for SU(3), SU(4), Sp(6)
- ✤ Full analytical solution of GHD equations for SU(N)
- What's the ultimate origin? [cf. Bulchandani, PRB (2020)]
 - Start with the ferromagnet; z = 2 critical theory
 - Spin transport at field h is dominated by spin solitons of size 1/h
 - These have velocity v(h) ~ h (as needed)

away from integrability

- Two classes of perturbations:
 - SU(2)-violating perturbations immediately destroy/scatter Goldstones
 - SU(2)-conserving local perturbations cannot couple directly to Goldstones, must couple through higher derivatives
 - Simple estimate of Goldstone lifetime: $\tau_s \ge s^2 \Rightarrow \sigma(\omega) \sim \log \omega$ (or slower!)
 - But this ignores higher-order/nonperturbative phenomena (cf. Lamacraft talk)

- Integrable limit: dense gases of stable elementary excitations
 - Diffusion from depolarization of magnons passing through large domains
 - Superdiffusion with z = 3/2 from Goldstone modes at finite density
- Surprises away from integrability: anomalous suppression *and* enhancement of transport
- Open question / task: framework for asymptotics away from integrability

Article

outlook: experiments!

Spin transport in a tunable Heisenberg model realized with ultracold atoms

 PHYSICAL REVIEW X 8, 021030 (2018)
 https://doi.org/10.1038/s41586-020-3033-y
 Paul Niklas Jepsen<sup>12.3 \infty</sub>, Jesse Amato-Grill^{12.3}, Ivana Dimitrova^{12.3}, Wen Wei Ho^{3.4}, Eugene Demler^{3.4} & Wolfgang Ketterle^{12.3}

 Thermalization near Integrability in a Dipolar Quantum Newton's Cradle
 Paul Niklas Jepsen<sup>12.3 \infty</sub>, Jesse Amato-Grill^{12.3}, Ivana Dimitrova^{12.3}, Wen Wei Ho^{3.4}, Eugene Demler^{3.4} & Wolfgang Ketterle^{12.3}

</sup></sup>

Yijun Tang,^{1,2} Wil Kao,^{2,3} Kuan-Yu Li,^{2,3} Sangwon Seo,^{1,2,3} Krishnanand Mallayya,⁴ Marcos Rigol,⁴ Sarang Gopalakrishnan,^{5,6} and Benjamin L. Lev^{1,2,3}

Detection of Kardar-Parisi-Zhang hydrodynamics in a quantum Heisenberg spin-1/2 chain

A. Scheie^{[0,7}, N. E. Sherman^{2,3,7}, M. Dupont^{[0,2,3}, S. E. Nagler^{[0,1}, M. B. Stone^{[0,1}, G. E. Granroth^{[0,1}, J. E. Moore^{2,3} → and D. A. Tennant^[0,4,5,6]

Editors' Suggestion Featured in Physics Generalized Hydrodynamics on an Atom Chip M. Schemmer,¹ I. Bouchoule,¹ B. Doyon,² and J. Dubail³

Generalized hydrodynamics in strongly interacting 1D Bose gases

Neel Malvania¹⁺, Yicheng Zhang¹⁺, Yuan Le¹, Jerome Dubail², Marcos Rigol¹, David S. Weiss^{1*}

Quantum gas microscopy of Kardar-Parisi-Zhang superdiffusion

David Wei,^{1, 2} Antonio Rubio-Abadal,^{1, 2, *} Bingtian Ye,³ Francisco Machado,^{3, 4} Jack Kemp,³ Kritsana Srakaew,^{1, 2} Simon Hollerith,^{1, 2} Jun Rui,^{1, 2, †} Sarang Gopalakrishnan,^{5, 6} Norman Y. Yao,^{3, 4} Immanuel Bloch,^{1, 2, 7} and Johannes Zeiher^{1, 2}

outlook

- How does weak integrability-breaking affect dynamics?
 - Relaxation rates without reference to form factors? [arXiv:1912.08826]
 - Can the relaxation rates depend "interestingly" on the perturbation?

PHYSICAL REVIEW X 8, 021030 (2018)

Featured in Physics

Thermalization near Integrability in a Dipolar Quantum Newton's Cradle

Yijun Tang,^{1,2} Wil Kao,^{2,3} Kuan-Yu Li,^{2,3} Sangwon Seo,^{1,2,3} Krishnanand Mallayya,⁴ Marcos Rigol,⁴ Sarang Gopalakrishnan,^{5,6} and Benjamin L. Lev^{1,2,3}

- How to go beyond the GHD limit? ("Orthogonality catastrophes")
- Realistic experimental consequences (NMR, cold atoms, etc.)

Spin transport in a Mott insulator of ultracold fermions

Matthew A. Nichols^{1,2,3}, Lawrence W. Cheuk^{2,4}, Melih Okan^{1,2,3}, Thomas R. Hartke^{1,2,3}, Enrique Mendez^{1,2,3}, T. Senthil¹, Ehs... + See all authors and affiliations

Science 25 Jan 2019: