Dramatis Personae **Chris Quintana** Ami Greene Jimmy Chen Jonathan Gross Vadim Smelyanskiy Yu Chen **External Collaborators** Matteo Ippoliti (Stanford) Vedika Khemani (Stanford) Shivaji Sondhi (Princeton→ Oxford) Roderich Moessner (Max-Planck) # Time Crystal: indefinite oscillation in a many-body isolated system ...stable for any number of interacting particles ...too few degrees of freedom [If stable \rightarrow need energy injection or fine-tuned] ### A challenge and an impossibility Impossible: breaking time-translational symmetry spontaneously at equilibrium $$\widehat{H}(t) = \widehat{H}_0$$ $$\widehat{H}(t+T) = \widehat{H}(t)$$ $$\widehat{H}(t) = \widehat{H}_0$$ #### Transverse field Ising model $$\hat{U}_F = \underbrace{e^{-\frac{i}{2}\sum_i h_i \hat{Z}_i}}_{\text{longitudinal fields Ising interaction}} \underbrace{e^{-\frac{i}{4}\sum_i \phi_i \hat{Z}_i \hat{Z}_{i+1}}}_{\text{longitudinal fields Ising interaction}} \underbrace{e^{-\frac{i}{2}\pi g \sum_i \hat{X}_i}}_{x \text{ rotation by } \pi g}$$ Non-integrability: $h_i \in [0, 2\pi]$, MBL: $\phi_i \in [-1.5\pi, -0.5\pi]$ landscape as seen by the excitations: CPHASE gates no MBL Before Exis there was nothing. — John Lennon — AZ QUOTES $$\hat{U}_F = e^{-\frac{i}{2}\sum_i h_i \hat{Z}_i} \underbrace{e^{-\frac{i}{4}\sum_i \phi_i \hat{Z}_i \hat{Z}_{i+1}}}_{\text{longitudinal fields Ising interaction}} \underbrace{e^{-\frac{i}{2}\pi g\sum_i \hat{X}_i}}_{x \text{ rotation by } \pi g}$$ #### Transverse field Ising model #### First generation experiments: observing period doubling response Observation of sub-harmonic response - over range of parameters - few initial states interactions induced mode locking Challenges: going beyond response and verifying formation of a phase - Establishing MBL - Long-lived oscillation - Check all initial states Definition of DTC: a phase that shows indefinite temporal ordering with no heating in a Hamiltonian system for all initial states. Stable to perturbation Indefinite period doubling infinite size #### Extended over a parameter range ### Separating Decoherence and Thermalization #### **Establishing MBL** #### Signatures of eigenstate ordering # Average spectral response via quantum typicality Ensemble average behavior → fully mixed state #### Typicality: → pure state randomly from Hilbert space. #### Estimating phase-transition by varying system size $$\chi^{\text{SG}} = \frac{1}{L-2} \sum_{i \neq j} \langle \hat{Z}_i \hat{Z}_j \rangle^2$$ Edwards-Anderson order parameter average of cycles 51 to 60 40 disorder instances 40,000 stats at cycle and disorder # Did Google team realized a time crystal? NO! SCIENCE Google Claims It Created a New Phase of **Matter That's In Perpetual Motion** NEWSLETTERS Sign up to read our regular email **NewScientist** Google researchers made a time crystal inside a quantum computer Google's 'time crystals' could be the greatest scientific achievement of our **lifetimes** EurekaEurekaEureka! Google says it has created a time crystal in a quantum computer, and it's weirder than you can imagine Can one realize a triangle, a horse, or a time crystal? thermodynamical phase > Bose-Hubbard Dynamical phase → Time crystals ...establish a scalable approach to studying non-equilibrium phases of matter on current quantum processors.