

Dramatis Personae

Chris Quintana

Ami Greene

Jimmy Chen

Jonathan Gross

Vadim Smelyanskiy

Yu Chen

External Collaborators

Matteo Ippoliti (Stanford)

Vedika Khemani (Stanford)

Shivaji Sondhi (Princeton→ Oxford)

Roderich Moessner (Max-Planck)

Time Crystal: indefinite oscillation in a many-body isolated system

...stable for any number of interacting particles

...too few degrees of freedom

[If stable \rightarrow need energy injection or fine-tuned]

A challenge and an impossibility

Impossible: breaking time-translational symmetry spontaneously at equilibrium

$$\widehat{H}(t) = \widehat{H}_0$$

$$\widehat{H}(t+T) = \widehat{H}(t)$$

$$\widehat{H}(t) = \widehat{H}_0$$

Transverse field Ising model

$$\hat{U}_F = \underbrace{e^{-\frac{i}{2}\sum_i h_i \hat{Z}_i}}_{\text{longitudinal fields Ising interaction}} \underbrace{e^{-\frac{i}{4}\sum_i \phi_i \hat{Z}_i \hat{Z}_{i+1}}}_{\text{longitudinal fields Ising interaction}} \underbrace{e^{-\frac{i}{2}\pi g \sum_i \hat{X}_i}}_{x \text{ rotation by } \pi g}$$

Non-integrability: $h_i \in [0, 2\pi]$, MBL: $\phi_i \in [-1.5\pi, -0.5\pi]$

landscape as seen by the excitations:

CPHASE gates no MBL Before Exis there was nothing.

— John Lennon —

AZ QUOTES

$$\hat{U}_F = e^{-\frac{i}{2}\sum_i h_i \hat{Z}_i} \underbrace{e^{-\frac{i}{4}\sum_i \phi_i \hat{Z}_i \hat{Z}_{i+1}}}_{\text{longitudinal fields Ising interaction}} \underbrace{e^{-\frac{i}{2}\pi g\sum_i \hat{X}_i}}_{x \text{ rotation by } \pi g}$$

Transverse field Ising model

First generation experiments: observing period doubling response

Observation of sub-harmonic response

- over range of parameters
- few initial states

interactions induced mode locking

Challenges: going beyond response and verifying formation of a phase

- Establishing MBL
- Long-lived oscillation
- Check all initial states

Definition of DTC: a phase that shows indefinite temporal ordering with no heating in a Hamiltonian system for all initial states.

Stable to perturbation Indefinite period doubling infinite size

Extended over a parameter range

Separating Decoherence and Thermalization

Establishing MBL

Signatures of eigenstate ordering

Average spectral response via quantum typicality

Ensemble average behavior → fully mixed state

Typicality:

→ pure state randomly from Hilbert space.

Estimating phase-transition by varying system size

$$\chi^{\text{SG}} = \frac{1}{L-2} \sum_{i \neq j} \langle \hat{Z}_i \hat{Z}_j \rangle^2$$

Edwards-Anderson order parameter

average of cycles 51 to 60 40 disorder instances 40,000 stats at cycle and disorder

Did Google team realized a time crystal? NO!

SCIENCE

Google Claims It Created a New Phase of **Matter That's In Perpetual Motion**

NEWSLETTERS

Sign up to read our regular email

NewScientist

Google researchers made a time crystal inside a quantum computer

Google's 'time crystals' could be the greatest scientific achievement of our **lifetimes**

EurekaEurekaEureka!

Google says it has created a time crystal in a quantum computer, and it's weirder than you can imagine

Can one realize a triangle, a horse, or a time crystal?

thermodynamical phase > Bose-Hubbard

Dynamical phase → Time crystals

...establish a scalable approach to studying non-equilibrium phases of matter on current quantum processors.

