

# Fully Quantum Scalable Approaches to Driven-Dissipative Lattice Models

Marzena Szymańska

### **Acknowledgements**



#### Group:







C. McKeever



C. Lledo Veloso

#### In collaboration with:



Giuliano Orso

Piotr Deuar Michal Matuszewski

#### Interpol consortium







### Funding:



Engineering and Physical Sciences Research Council



# **Interacting Photons**



#### **Interacting Photons**

New Area: Quantum Fluids of Light



Nature Materials 2018







- Non-equilibrium phase transitions
- · Critical phenomena
- Non-equilibrium superfluidity
- Topological transitions and defects



Vortices in polariton quantum fluid

# **Lattice Potentials** for Interacting Photons

Emerging Area: Quantum Solids of Light





# Quantum Solids of Light



#### **Polariton Lattices**





- flat bands
- photonic "graphene",
- topologically protected states

#### **Circuit QED Lattices**



• Dissipative phase transitions synthetic materials for exploring brand new physics, e.g. interacting quantum mechanics in curved space

### Quantum Solids of Light



#### **Polariton Lattices**





- flat bands
- photonic "graphene",
- topologically protected states

#### **Circuit QED Lattices**



 Dissipative phase transitions synthetic materials for exploring brand new physics, e.g. interacting quantum mechanics in curved space

#### **Strongly Interacting Photons**

correlated or non-trivial topological states, but ... in driven-dissipative environment



# **Theory Challenge**



We need effective methods to treat strong correlations and entanglement in driven-dissipative lattice systems



# Theory Challenge



Light-matter platforms
strong competition between coherent and
dissipative dynamics



# **Theory Challenge**



#### **Light-matter platforms**

strong competition between coherent and dissipative dynamics



#### **Phase Space Methods**

Good for driven-dissipative non-equilibrium but weakly correlated systems



Extend to stronger correlations and entanglement

#### **Tensor Network Methods**

Good for **strongly correlated** (especially 1D) **equilibrium** systems



Extend to driven-dissipative non-equilibrium systems

#### Positive P for Driven-Dissipative Lattices of Bosons



P. Deuar at. al. PRX Quantum (2021)



(c) Closed Systems







(d) Open Systems



$$\left\langle \left(\hat{a}^{\dagger}\right)^{n}\hat{a}^{m}\right\rangle =\frac{1}{s}\sum_{s}\alpha^{m}(\tilde{\alpha}^{*})^{n}$$

### Positive P Method



• Lindblad Master equation:  $\frac{\partial \hat{\rho}}{\partial t} = -i[\hat{H}, \hat{\rho}] + \frac{\gamma}{2} \sum_{j} 2\hat{a}_{j} \hat{\rho} \hat{a}_{j}^{\dagger} - \hat{a}_{j}^{\dagger} \hat{a}_{j} \hat{\rho} - \hat{\rho} \hat{a}_{j}^{\dagger} \hat{a}_{j}$ 



• Fokker-Planck equation for  $P(\alpha, \beta)$ :  $\frac{\partial P(\vec{\alpha}, \vec{\beta})}{\partial t} = \mathcal{L}[P(\vec{\alpha}, \vec{\beta})]$  (where  $\mathcal{L}$  is some differential operator in phase space  $\alpha_j, \beta_j$ )



- Stochastic equations for phase space variables  $\alpha_j$ ,  $\beta_j$ :  $\frac{\partial \alpha_j}{\partial t} = \dots \quad \frac{\partial \beta_j}{\partial t} = \dots$
- Quantum observables correspond to stochastic averages  $\langle ... \rangle_{PP}$  of products of phase space variables:  $\left\langle \left( \hat{a}_{j}^{\dagger} \right)^{m} \hat{a}_{j}^{n} \right\rangle = \left\langle \alpha_{j}^{n} \beta_{j}^{m} \right\rangle_{PP}$ 
  - Exact in the limit of infinite realisations.

### **Bose-Hubbard Model**





#### Driven Dissipative Bose-Hubbard model:

Noise
Generating

$$H = \sum_{i} \left[ -\Delta \hat{a}_{i}^{\dagger} \hat{a}_{i} + \frac{U}{2} \hat{a}_{i}^{\dagger} \hat{a}_{i}^{\dagger} \hat{a}_{i} \hat{a}_{i} + F_{i} \left( \hat{a}_{i}^{\dagger} + \hat{a}_{i} \right) \right] - \sum_{i,j} J_{i,j} \left[ \hat{a}_{j}^{\dagger} \hat{a}_{i} + \hat{a}_{i}^{\dagger} \hat{a}_{j} \right]$$

Master Equation: 
$$\frac{\partial \hat{\rho}}{\partial t} = -i[\hat{H}, \hat{\rho}] + \frac{\gamma}{2} \sum_{j} 2\hat{a}_{j} \hat{\rho} \hat{a}_{j}^{\dagger} - \hat{a}_{j}^{\dagger} \hat{a}_{j} \hat{\rho} - \hat{\rho} \hat{a}_{j}^{\dagger} \hat{a}_{j}$$



#### Ito Stochastic equations:



$$\frac{\partial \alpha_{j}}{\partial t} = \left(i\Delta - \frac{\gamma}{2} - iU\alpha_{j}\beta_{j} + \frac{iU}{2}\right)\alpha_{j} - iF_{j} + i\sqrt{iU}\alpha_{j}\xi_{j}^{(1)} + i\sum_{i}J_{i,j}\alpha_{i},$$

$$\frac{\partial \beta_{j}}{\partial t} = \left(-i\Delta - \frac{\gamma}{2} + iU\alpha_{j}\beta_{j} - \frac{iU}{2}\right)\beta_{j} + iF_{j}^{*} + \sqrt{iU}\beta_{j}\xi_{j}^{(2)} - i\sum_{i}J_{i,j}\beta_{i}.$$

#### with real Gaussian noises

$$\left\langle \xi_{j}^{(\lambda)}(t) \right\rangle = 0 , \left\langle \xi_{j}^{(\lambda)}(t) \xi_{j'}^{(\lambda')}(t') \right\rangle = \delta_{\lambda,\lambda'} \delta_{j,j'} \delta(t-t')$$

# Applicability of Positive P



• Closed systems: noise self amplification results in instabilities in positive P trajectories

#### **Closed Systems**





# Applicability of Positive P



P. Deuar at. al. PRX Quantum (2021)

• Closed systems: noise self amplification results in instabilities in positive P trajectories

 Open systems: sufficient dissipation can stabilise trajectories fully!

(green = fully stable, blue/yellow = marginal cases)



# Applicability of Positive P



P. Deuar at. al. PRX Quantum (2021)

• Closed systems: noise self amplification results in instabilities in positive P trajectories

 Open systems: sufficient dissipation can stabilise trajectories fully!

• Region of applicability for positive P complementary to Truncated Wigner.



# **Bunching and Antibunching**





Quantum Effects accessible by Positive P

### **Square Lattices**





P. Deuar at. al. PRX Quantum (2021)

- Quantum correlations not well described by approximate methods
- Large systems needed for convergence!
- Positive P scales linearly with system size

### **Non-unform Lattices**





Space and time-dependence of parameters easily incorporated with no extra numerical effort

Nonlocal interactions can be efficiently treated

Perfect to look at correlations, interference, tunneling and nonlocal effects



### **Polariton Strained Graphene and Landau Levels**





### **Homogenous Pump**



C. Lledo at. al. arxiv 2103.07509 (2021)



#### Magnetic length:

$$l_B = \sqrt{\frac{1}{|eB|}} = \frac{3d}{\sqrt{2\tau}} \approx 8.7d$$

x/d

n=0 Landau-level states

$$\psi_A(x_i, y_j) = 0$$

$$\psi_B(x_i, y_j) \propto e^{iq_y y_j} e^{-(x_i - l_B^2 q_y)^2 / (2l_B^2)}$$

#### New Direction: Positive P for Spin-Boson Systems





#### (c) Closed Systems





#### (d) Open Systems





(e) 
$$\left\langle \left( \hat{a}^{\dagger} \right)^n \hat{a}^m \right\rangle = \sum_{\mathcal{S}} \alpha^m \beta^n$$

### Strong Interactions and Low Dissipation Limit 🖮



### **Numerical Tensor Network Methods**



- ♦ Restrict the problem to the "physical corner" of Hilbert space
- ♦ Represent the quantum state as a network of tensors
- ♦ Tensor network with loops (cyclic) pose a challenge
- → First attempt at designing an algorithm for 2D open dissipative systems not fully successful

A. Kshetrimayum *at. al.* Nature Comm 8, 1 (2017) D. Kilda *at. al.* SciPost (2021)

Our Goal: accurate dynamics and steady states of 2D open quantum lattice models ideally in the thermodynamic limit using a tensor network method

### **Open Quantum Lattice Models**





$$\frac{d\rho}{dt} = \mathcal{L}(\rho) = -i\left[\mathcal{H}, \rho\right] + \mathcal{D}(\rho),$$

$$\hat{\mathcal{D}}(\hat{
ho}) = \sum_{lpha} \left( \hat{L}_{lpha} 
ho \hat{L}_{lpha}^{\dagger} - rac{1}{2} \{ \hat{L}_{lpha}^{\dagger} \hat{L}_{lpha}, \hat{
ho} \} 
ight),$$

C. Mc Keever, MH Szymanska PRX (2021)





# System (Unit Cell + Environment)

### **Numerical Tensor Network Methods**

















(b)



### A Benchmark



#### Transverse field dissipative Ising model

$$\hat{H} = rac{V}{z} \sum_{\langle j,l \rangle} \hat{\sigma}_{j}^{z} \hat{\sigma}_{l}^{z} + \sum_{j} rac{h_{x}}{2} \hat{\sigma}_{j}^{x} \qquad \hat{L}_{j} = \sqrt{\gamma} \frac{1}{2} \left( \hat{\sigma}_{j}^{y} - i \hat{\sigma}_{j}^{z} \right)$$

- ♦ Steady state of the dissipator does not commute with the Hamiltonian
- $\Rightarrow$  In the special case  $hx/\gamma = 0$  exactly solvable for local observables in time [M. Foss-Feig et. al. PhysRevLett.119.190402]
- ♦ Consider four sets of parameters:
  - ightharpoonup Strong Damping V/ $\gamma = 0.2$  ,  $hx/\gamma = 0$
  - $\Rightarrow$  Moderate Damping  $V/\gamma = 1.2$ ,  $hx/\gamma = 0$
  - $\Rightarrow$  Weak Damping  $V/\gamma = 4.0$ ,  $hx/\gamma = 0$
  - ightharpoonup No Exact Solution V/ $\gamma = 0.5$ ,  $hx/\gamma = 1$



### **Strong Damping**



C. Mc Keever, MH Szymanska PRX (2021)

$$V/\gamma = 0.2$$
,  $hx/\gamma = 0$ 



### **Moderate Damping**



C. Mc Keever, MH Szymanska PRX (2021)

$$V/\gamma = 1.2$$
,  $hx/\gamma = 0$ 



- ♦ Significant correction to mean field (D=1) result

# **Weak Damping**



C. Mc Keever, MH Szymanska PRX (2021)

$$V/\gamma = 4.0$$
,  $hx/\gamma = 0$ 



- ♦ Significant correction to mean field (D=1) result
- $\diamond$  Accurate at early times, begins to deviate from exact result after a few t $\gamma$

Accurate dynamics for strong and moderate damping Significant correction to the mean field theory

### **Finite Transverse Field**



C. Mc Keever, MH Szymanska PRX (2021)

$$V/\gamma = 0.5$$
,  $hx/\gamma = 1.0$ 



- ♦ Significant correction to mean field (D=1) result
- ♦ Convergence achieved for D>4

No exact solution to compare with Quantum Simulator needed

## Anisotropic Dissipative XY model



C. Mc Keever, MH Szymanska PRX (2021)

$$\hat{H} = \frac{J}{z} \sum_{\langle j, k \rangle} \hat{\sigma}_j^x \hat{\sigma}_k^x - \hat{\sigma}_j^y \hat{\sigma}_k^y$$

$$\hat{L}_j = \sqrt{\Gamma} \hat{\sigma}_j^-$$

Anisotropic coupling: effective magnetic field perpendicular to the spin

Dissipation: causes decaying towards

PT-symmetric model  $|\downarrow^z\rangle$ 

♦ Mean-field theory: spontaneously symmetry broken staggered-XY (sXY) steady-state phase stable in 2D

E. Lee et. al., PRL. 110, 257204 (2013)









Keldysh Field theory: long wavelength limit, classical XY always above BKT transition i.e sXY destroyed by fluctuations

# Anisotropic Dissipative XY model





Any long range algebraic order associated to the symmetry broken phase is not present in the iPEPO solution - disordered phase

# Anisotropic Dissipative XY model





Smooth crossover between maximally mixed and pure state – no phase transition despite PT symmetry

### **Conclusions**





- Dissipation in e.g. photonic platforms helps in performance of both stochastic and TN methods
- Quantum correlation and entanglement possible to describe with these methods
- Physical Quantum Simulators needed for verification and to cross the limits