Local quantum dynamics and information flow

Benjamin Schumacher

Mike Westmoreland Lee Kennard Michael Nathanson Katharina Christandl

Reinhard Werner

Denison University Kenyon College ('07) Kenyon / St. Mary's College Kenyon / Cal Poly

U. of Braunschweig

Universe as information network

Universe is divided into subsystems.

Subsystems interact and exchange information.

Locality: Not all subsystems exchange information directly.

What does quantum mechanics say about the rules of this web? What does quantum mechanics say about locality?

Classical cellular automata

Classical cellular automata

- Uniform grid of cells (1-D, 2-D, ...)
- Each cell has a finite number of states.
- At each discrete time step, cell states update according to a local rule – we need only know the previous states of a finite "neighborhood" of cells.
- Any local rule is okay.
- Global update rule can be reversible or irreversible.

Quantum cellular automata

Quantum cellular automata

- Uniform grid of cells (1-D, 2-D, ...)
- Each cell is a quantum system.
- To find the next state of any bounded region, we only need to know the previous state of a "neighborhood" of that region
- Not all local rules can be woven together into a global update rule.
- Global evolution can be unitary or nonunitary

Causal structure

Bulls-eye and chain

A is the system of interest.C is the distant "rest of the world"B is the rest of A's "neighborhood"

Locality: In one time step, there is no information transfer from C to A.

Information flow

Note: We must consider all possible initial states of A and C.

When does information "flow" from C to A?

- Information flows from C to A if the final state of A depends on the initial state of C.
- Information does not flow from C to A if the final state of A does not depend on the initial state of C.

Quantum difficulties!

Initial state of AC is not determined by the initial states of A and C separately – quantum entanglement.

Two bits (classical)

Two classical bits. Interaction: Controlled-NOT C = control bit T = target bit

Final T state does depend on initial C state. There is information flow from C to T.

Final C state does not depend on initial T state. There is no information flow from T to C.

Classical CNOT has one-way information flow from C to T.

Note: CNOT operation is reversible $\begin{array}{c} \mathsf{CT} \rightarrow \mathsf{CT} \\ 0 \ 0 \rightarrow 0 \ 0 \\ 0 \ 1 \rightarrow 0 \ 1 \\ 1 \ 0 \rightarrow 1 \ 1 \\ 1 \ 1 \rightarrow 1 \ 0 \end{array}$

Two qubits

CNOT is unitary

Look at CNOT in a conjugate basis:

- Z

$$|+\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$
$$|-\rangle = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$$

One-way information flow? No!

$$\begin{array}{|||} |CT\rangle \rightarrow |CT\rangle \\ |++\rangle \rightarrow |++\rangle \\ |+-\rangle \rightarrow |--\rangle \\ |-+\rangle \rightarrow |-+\rangle \\ |--\rangle \rightarrow |+-\rangle \end{array}$$

In the conjugate basis, control and target qubits switch roles!

No one-way information flow

- No unitary interaction can yield one-way information flow between quantum systems.
- Quantum measurement
 - C = system of interest
 - T = measuring apparatus

We'd like to have information flow $C \rightarrow T$ only, so that we do not disturb the system. But any unitary interaction can make information flow either way.

• Non-unitary quantum operations can have one-way information flow.

Quantum dynamics

Dynamics of an isolated quantum system is unitary.

pure states \rightarrow pure states mixed states \rightarrow mixed states $|\psi\rangle \rightarrow U |\psi\rangle$ $\rho \rightarrow U \rho U^{\dagger}$ $\dot{\gamma}$ density operator

Open systems: General quantum evolution is described by a map on density operators. Pure states may evolve to mixed states and vice versa.

 $|\rho \rightarrow \mathsf{E}(\rho)|$

E must be linear (in ρ), trace-preserving, and completely positive (CP).

Locality

Global evolution map E ABC

Locality

The evolution map E^{ABC} is local – that is, there is no information flow from C to A – provided the final state of A is determined by the initial state of AB alone.

Global unitarity

Can we have

- Global evolution of ABC unitary; and
- No information transfer from C to A ?

Yes, of course. Trivial cases: A or C are isolated.

Global unitarity

Can we have

- Global evolution of ABC unitary; and
- No information transfer from C to A ?

Yes, of course. Trivial cases:

A or C are isolated.

A and C interact separately with parts of composite system B.

A more interesting example

Points to note

- AB interaction followed by BC interaction.
- One-way information transfer: $A \rightarrow C$ but **not** $C \rightarrow A$
- Previous examples can be converted to this general form

Remarkable fact: This is the only possibility!

A decomposition theorem

Suppose system ABC evolves via unitary *U*^{ABC}, such that no information transfer is possible from C to A ("locality"). Then

$$U^{\scriptscriptstyle ABC} = (1^{\scriptscriptstyle A} \otimes W^{\scriptscriptstyle BC}) (V^{\scriptscriptstyle AB} \otimes 1^{\scriptscriptstyle C})$$

A two-system result

Suppose E^{AC} is a CP map such that no information is transferred from C to A. Then there is a unitary representation for E^{AC} of the form

A and C interact with a common environment, but A's interaction is finished before C's interaction starts.

Semicausal operations are semilocalizable Beckman et. al. (2001) Eggeling et al. (2002)

General decomposition?

Suppose ABC evolves according to a general CP map E, and no information is transferred from C to A.

Can we always decompose such a map into F and G as follows?

No. There are local maps that are not of this form.

However . . .

Locality in general

Suppose E^{ABC} is a general CP map that is local – that is, no information can flow from C to A. Then the map has a unitary representation of the form:

C can interact with B and E, but only after A has finished interacting with them.

Dissecting CNOT

We know that the quantum CNOT gate involves information flow in both directions.

Can we model this in an explicit way? What is the structure of information flow inside CNOT?

Model: Simple information exchange

Note that every classical gate can be modeled in this way. (Exchange copies!)

Can CNOT be modeled by local CP maps and simple information exchange?

No!

Dissecting CNOT

M. Nathanson: No entangling unitary twoqubit gate can be modeled by local CP maps and simple information exchange

Here are two ways that you **can** model CNOT:

What is the essential difference between these information flow patterns and simple information exchange?

Big ideas

Unitary interactions always allow information to flow both ways. But this is not just "simple information exchange"!

In order to prevent information transfer from C to A, we must somehow "hide" C from A in the interaction. The only place to hide C is *in the causal future*.

References

- D. Beckman, D. Gottesman, M. A. Nielsen and John Preskill, "Causal and localizable quantum operations", *Phys. Rev. A* 64, 052309 (2001).
- T. Eggeling, D. Schlingemann and R. F. Werner, "Semicausal operations are semilocalizable", *Europhys. Lett.* **57 (6)**, 782 (2002).
- E. Hawkins, F. Markopoulou, and H. Sahlmann, "Evolution in Quantum Causal Histories", *Class. Quant. Grav.* **20**, 3839 (2003).
- B. Schumacher and R. F. Werner, "Reversible Quantum Cellular Automata", quant-ph/0405174
- B. Schumacher and M. D. Westmoreland, "Locality and information transfer in quantum operations", *Quant. Info. Proc.* **4**, 13 (2005).