MYSTERY TITLE HERE:

Introduction

Terrestrial Detection?

Stellar Laboratories

The Calculation

Results

Acknowledgements

PAIR PRODUCTION WITH NEUTRINOS AND INTENSE MAGNETIC FIELDS

TODD M. TINSLEY HENDRIX COLLEGE

Duane A. Dicus Wayne W. Repko

UNIVERSITY OF TEXAS @ AUSTIN MICHIGAN STATE UNIVERSITY

Introduction

• THE PROCESS

Terrestrial Detection?

Stellar Laboratories

The Calculation

Results

Acknowledgements

Introduction

• THE PROCESS

Terrestrial Detection?

Stellar Laboratories

The Calculation

Results

Acknowledgements

• This process is kinematically forbidden!

Introduction

• THE PROCESS

Terrestrial Detection?

Stellar Laboratories

The Calculation

Results

Acknowledgements

• So we turn on a magnetic field.

Introduction

• THE PROCESS

Terrestrial Detection?

Stellar Laboratories

The Calculation

Results

Acknowledgements

- So we turn on a magnetic field.
- This is not new:

neutrino-electron scattering, neutrino-nucleus scattering, electron-positron pair annihilation, Urca processes ($pe \rightarrow n\nu_e$, $n \rightarrow pe\bar{\nu}_e$), neutrino absorption by nucleons, etc.

What would you need?

Introduction

Terrestrial Detection?

- NEUTRINO SOURCE
- FIELD SOURCE
- RESULTS

Stellar Laboratories

The Calculation

Results

Introduction

Terrestrial Detection?

• NEUTRINO SOURCE

• FIELD SOURCE

• RESULTS

Stellar Laboratories

The Calculation

Results

Acknowledgements

What would you need?

1. A neutrino source

Introduction

Terrestrial Detection?

- NEUTRINO SOURCE
- FIELD SOURCE
- RESULTS

Stellar Laboratories

The Calculation

Results

Acknowledgements

What would you need?

1. A neutrino source

NuMI-MINOS

- Protons leave main injector
- Hit a target and produce mesons
- π^+ decay into μ and ν_{μ}
- $E_{\nu_{\mu}} \simeq 0 25 \text{ GeV}$

Introduction

Terrestrial Detection?

• NEUTRINO SOURCE

• FIELD SOURCE

• RESULTS

Stellar Laboratories

The Calculation

Results

Acknowledgements

What would you need?

- 1. A neutrino source
- 2. Strong source of field

Introduction

Terrestrial Detection?

- NEUTRINO SOURCE
- FIELD SOURCE
- RESULTS

Stellar Laboratories

The Calculation

Results

Acknowledgements

What would you need?

- 1. A neutrino source
- 2. Strong source of field

TW Lasers

- 20 TW Laser
- 35 fs, 0.7 J/pulse
- 10 Hz
- $E \approx 10^{11} \, \mathrm{V/cm}$
- $B \approx 10^9 \, {\rm G}$

Introduction

Terrestrial Detection?

- NEUTRINO SOURCE
- FIELD SOURCE
- RESULTS

Stellar Laboratories

The Calculation

Results

Acknowledgements

What would you need?

- 1. A neutrino source
- 2. Strong source of field

Introduction

Terrestrial Detection?

- NEUTRINO SOURCE
- FIELD SOURCE
- RESULTS

Stellar Laboratories

The Calculation

Results

Acknowledgements

What would you need?

- 1. A neutrino source
- 2. Strong source of field

Introduction

Terrestrial Detection?

- NEUTRINO SOURCE
- FIELD SOURCE
- RESULTS

Stellar Laboratories

The Calculation

Results

Acknowledgements

- 1. A neutrino source
- 2. Strong source of field

Production Length

Introduction

Terrestrial Detection?

- NEUTRINO SOURCE
- FIELD SOURCE
- RESULTS

Stellar Laboratories

The Calculation

Results

Acknowledgements

- 1. A neutrino source
- 2. Strong source of field
- 3. A dedicated student!

Production Length

CORE-COLLAPSE SUPERNOVAE

Introduction

Terrestrial Detection?

Stellar Laboratories

- SUPERNOVAE
- MAGNETARS
- MAGNETIC FIELDS

The Calculation

Results

- A precise mechanism is unknown.
- Neutrinos are overwhelmingly favored for energy transfer
- Very large magnetic fields $B \approx 10^{12} 10^{14}$ G.

MAGNETARS

Introduction

Terrestrial Detection?

Stellar Laboratories

- SUPERNOVAE
- MAGNETARS
- MAGNETIC FIELDS

The Calculation

Results

Acknowledgements

The New Hork Times nytimes.com

PRINTER-FRIENDLY FORMAT SIDEWAYS

Dying Star Flares Up, Briefly Outshining Rest of Galaxy

By KENNETH CHANG

February 20, 2005

or a fraction of a second in December, a dying remnant of an exploded star let out of a burst of light that outshone the Milky Way's other half-trillion stars combined, astronomers announced Friday.

Even on Earth, half a galaxy away, the starburst was one of the brightest objects ever observed in the sky, after the Sun and perhaps a few comets. The magnitude of the event caught most astronomers by surprise.

"Whoppingly bright," said Dr. Bryan M. Gaensler, an astronomer at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. "It gave off more energy in 0.2 seconds than the Sun does in 100,000 to 200,000 vears."

- Pair production as a mechanism for observed x-ray production
- $B \lesssim 10^{15}$ G.

MAGNETIC FIELD SCALE

Introduction

Terrestrial Detection?

Stellar Laboratories

- SUPERNOVAE
- MAGNETARS
- MAGNETIC FIELDS

The Calculation

Results

Acknowledgements

Introduction

Terrestrial Detection?

Stellar Laboratories

The Calculation

DIRAC SOLUTION

• Amplitude

• PRODUCTION RATE

Results

$$(i\partial + eA(x) - m_e)\psi_e(x) = 0$$
 $A(x) = (0, -yB, 0, 0)$

Introduction

Terrestrial Detection?

Stellar Laboratories

The Calculation

• DIRAC SOLUTION

• Amplitude

Results

• PRODUCTION RATE

$$\psi_e(x) = \sum_{n=0}^{\infty} \sum_{s=\pm} \int \frac{\mathrm{d}^2 \vec{p}_y}{(2\pi)^2} \sqrt{\frac{E_n + m_e}{2E_n}} u^s(\vec{p}_y, n, y) \, e^{-\imath p \cdot y} \, \hat{a}_e^s_{p_y, n} + \dots$$

 $(i\partial + eA(x) - m_e)\psi_e(x) = 0$ A(x) = (0, -yB, 0, 0)

Acknowledgements

Introduction

Terrestrial Detection?

Stellar Laboratories

The Calculation

• DIRAC SOLUTION

• Amplitude

Results

• PRODUCTION RATE

$$\psi_e(x) = \sum_{n=0}^{\infty} \sum_{s=\pm} \int \frac{\mathrm{d}^2 \vec{p}_y}{(2\pi)^2} \sqrt{\frac{E_n + m_e}{2E_n}} u^s(\vec{p}_y, n, y) \, e^{-\imath p \cdot y} \, \hat{a}_e^s_{\vec{p}_y, n} + \dots$$

 $(i\partial + eA(x) - m_e)\psi_e(x) = 0$ A(x) = (0, -yB, 0, 0)

Introduction

Terrestrial Detection?

Stellar Laboratories

The Calculation

• DIRAC SOLUTION

• Amplitude

• PRODUCTION RATE

$$\psi_e(x) = \sum_{\boldsymbol{n=0}}^{\infty} \sum_{s=\pm} \int \frac{\mathrm{d}^2 \vec{p}_y}{(2\pi)^2} \sqrt{\frac{\boldsymbol{E}_{\boldsymbol{n}} + m_e}{2\boldsymbol{E}_{\boldsymbol{n}}}} u^s(\vec{p}_y, \boldsymbol{n}, y) \, e^{-\imath p \cdot \boldsymbol{y}} \, \hat{a}_e^s_{e \, \vec{p}_y, \boldsymbol{n}} + \dots$$

 $(i\partial + eA(x) - m_e)\psi_e(x) = 0$ A(x) = (0, -yB, 0, 0)

Acknowledgements

Results

Introduction

Terrestrial Detection?

Stellar Laboratories

The Calculation

• DIRAC SOLUTION

• Amplitude

• PRODUCTION RATE

Acknowledgements

$$(i\partial + eA(x) - m_e)\psi_e(x) = 0$$
 $A(x) = (0, -yB, 0, 0)$

$$\psi_e(x) = \sum_{n=0}^{\infty} \sum_{s=\pm} \int \frac{\mathrm{d}^2 \vec{p}_y}{(2\pi)^2} \sqrt{\frac{E_n + m_e}{2E_n}} u^s(\vec{p}_y, n, y) \, e^{-\imath p \cdot y} \, \hat{a}_e^s_{p_y, n} + \dots$$

Landau Levels

U

$$\boldsymbol{E_n} = \sqrt{m_e^2 + p_z^2 + 2\boldsymbol{n}eB}$$

$$u^s(\vec{p}_y, \mathbf{n}, y) \propto H_{\mathbf{n}}(p_x, y)$$

SCATTERING AMPLITUDE

Introduction

Terrestrial Detection?

Stellar Laboratories

The Calculation

- DIRAC SOLUTION
- AMPLITUDE
- PRODUCTION RATE

Results

Acknowledgements

 $\mathcal{M}_{
u_{\mu}}=\mathcal{M}_{Z}$

 $\mathcal{M}_{\nu_e} = \mathcal{M}_Z + \mathcal{M}_W$

SCATTERING AMPLITUDE

Introduction

Terrestrial Detection?

Stellar Laboratories

The Calculation

• DIRAC SOLUTION

 \mathcal{V}

- AMPLITUDE
- PRODUCTION RATE

Results

Acknowledgements

 $\mathcal{M}_{\nu_e} = \mathcal{M}_Z + \mathcal{M}_W$

$$\mathcal{M}_{\binom{\nu_{e}}{\nu_{\mu}}} = \frac{-iG_{F}}{2^{3}\sqrt{2}} \sqrt{\frac{(E_{n_{e}} + m_{e})(E_{n_{\bar{e}}} + m_{e})}{EE'E_{n_{e}}E_{n_{\bar{e}}}}} \bar{u}^{s'}(p')\gamma_{\mu} (1 - \gamma^{5}) u^{s}(p) \\ \times \int dy \, e^{i(p_{y} - p'_{y})y} \, \bar{u}^{s_{1}} \left(\vec{p}_{ey}, n_{e}, y\right) \gamma^{\mu} \left(G_{V}^{\binom{+}{2}} - \gamma^{5}\right) v^{s_{2}} \left(\vec{p}_{\bar{e}y}, n_{\bar{e}}, y\right)$$

SCATTERING AMPLITUDE

Introduction

Terrestrial Detection?

Stellar Laboratories

The Calculation

• DIRAC SOLUTION

 \mathcal{V}

- AMPLITUDE
- PRODUCTION RATE

Results

Acknowledgements

 $\mathcal{M}_{\nu_e} = \mathcal{M}_Z + \mathcal{M}_W$

$$\mathcal{M}_{\binom{\nu_{e}}{\nu_{\mu}}} = \frac{-iG_{F}}{2^{3}\sqrt{2}} \sqrt{\frac{(E_{n_{e}} + m_{e})(E_{n_{\bar{e}}} + m_{e})}{EE'E_{n_{e}}E_{n_{\bar{e}}}}} \bar{u}^{s'}(p')\gamma_{\mu} (1 - \gamma^{5}) u^{s}(p) \\ \times \int dy \, e^{i(p_{y} - p'_{y})y} \, \bar{u}^{s_{1}} \left(\vec{p}_{ey}, n_{e}, y\right) \gamma^{\mu} \left(G_{V}^{(\frac{+}{2})} - \gamma^{5}\right) v^{s_{2}} \left(\vec{p}_{\bar{e}y}, n_{\bar{e}}, y\right)$$

$$G_V^{\pm} = 1 \pm 4 \sin^2 \theta_W$$

Introduction

Terrestrial Detection?

Stellar Laboratories

The Calculation

- DIRAC SOLUTION
- AMPLITUDE

• PRODUCTION RATE

Results

$$\Gamma = \sum_{n_e, n_{\bar{e}}=0}^{\infty} \int \mathrm{d}\Phi \, \delta_{\mathcal{Y}}^3 \left(p - p' - p_e - p_{\bar{e}} \right) \overline{\left| \mathcal{M} \right|^2}$$

Introduction

Terrestrial Detection?

Stellar Laboratories

The Calculation

• DIRAC SOLUTION

• AMPLITUDE

• PRODUCTION RATE

Results

$$\Gamma = \sum_{n_e, n_{\bar{e}}=0}^{\infty} \int \mathrm{d}\Phi \, \delta_y^3 \left(p - p' - p_e - p_{\bar{e}} \right) \overline{\left| \mathcal{M} \right|^2}$$

- Sums over Landau levels <u>are</u> constrained by energy conservation.
- As initial energy is increased the number of states contributing increases very rapidly.

Introduction

Terrestrial Detection?

Stellar Laboratories

The Calculation

- DIRAC SOLUTION
- AMPLITUDE

• PRODUCTION RATE

Results

$$\Gamma = \sum_{n_e, n_{\bar{e}}=0}^{\infty} \int \mathrm{d}\Phi \, \delta^3_{\mathfrak{Y}} \left(p - p' - p_e - p_{\bar{e}} \right) \overline{\left| \mathcal{M} \right|^2}$$

Introduction

Terrestrial Detection?

Stellar Laboratories

The Calculation

• DIRAC SOLUTION

• AMPLITUDE

• PRODUCTION RATE

Results

$$\Gamma = \sum_{n_e, n_{\bar{e}}=0}^{\infty} \int \mathrm{d}\Phi \, \delta^3_{\mathcal{Y}} \left(p - p' - p_e - p_{\bar{e}} \right) \left| \mathcal{M} \right|^2$$

- Spin sums produce a result dependent on 16 different combinations of the Landau levels
- Integration over products of Hermite functions produces combinations of associated Laguerre polynomials that depend on the Landau levels

ANGULAR DEPENDANCE

THENDRIX

THE HENDRIX

 $\nu_e \Gamma_{0,20}$ Introduction $\nu_e \rightarrow \nu_e e \overline{e}$ **Terrestrial Detection?** 10^{-8} **Stellar Laboratories** $B/B_{\rm c} = 1000$ **The Calculation** 10^{-10} $B/B_{\rm c} = 100$ · Results 10^{-12} $\Gamma_{0,20}$ $(\Gamma_{20,0})$ $({
m cm}^{-1})$ • ANGLULAR $B/B_{\rm c} = 10$ 10^{-14} DEPENDANCE • $\nu_e \Gamma_{0,0}$ 10^{-16} • $\nu_e \Gamma_{0,1}$ $B/B_{\rm c} = 1$ • $\nu_e \Gamma_{0,20}$ 10^{-18} • $\nu_e \Gamma_{10,10}$ 10^{-20} • $\nu_e \approx$ 10^{-22} • $\nu_{\mu} \Gamma_{0,0}$ • $\nu_{\mu} \Gamma_{0,1}$ 10^{-24} $B/B_{\rm c} = 0.1$ • $\nu_{\mu} \Gamma_{0,20}$ 10^{-26} • $\nu_{\mu} \Gamma_{10,10}$ • $\nu_{\mu} \approx$ 10^{0} 10^1 10^{2} 10^{3} 10^{4} Acknowledgements E_{ν_e} (MeV)

THE HENDRIX

THENDRIX

THENDRIX

HENDRIX

THE HENDRIX

THE HENDRIX

ACKNOWLEDGEMENTS

Introduction

Terrestrial Detection?

Stellar Laboratories

The Calculation

Results

Acknowledgements

• ACKNOWLEDGEMENT

Thanks to:

- Craig Wheeler and Palash Pal
- U.S. Department of Energy under Grant No. DE-F603-93ER40757
- National Science Foundation under Grants No. PHY-0244789 and No. PHY-0555544

More information:

- Dicus, Repko, & Tinsley, Phys. Rev. D 76, 025005 (2007), arXiv:0704.1695v1.
- Tinsley, Phys. Rev. D 71, 073010 (2005), arXiv:hep-ph/0412014v1.
- Bhattacharya & Pal, Proc. Ind. Natl. Sci. Acad. 70, 145 (2004), arXiv:hep-ph/0212118v3.

