Phenomenology of Extreme Type-II Superconductors in the Mixed State Sasha Dukan, Department of Physics and Astronomy Goucher College Baltimore, MD 21204

Support: NSF grant No. DMR-0856415 (2009-2013)

Background

liberal arts college, residential, suburban, co-educational
undergraduate enrollment ~1500, faculty full-time~130

Department: 3 physicists (1 theorist) + astronomer + nonteaching lab staff

Physics: 1-4 majors/year, currently total of 30 majors

History: physics major reinstated 2001

Collaborative Faculty/Student Research

- Goucher Science Student Summer Research Experience: 10-week, support for student + faculty (endowments + NSF, NASA, Research Corp., PRF, NIH etc.)
- Participation: 20% of students in sciences/math
- Theoretical Physics: 16 student collaborators since 1998 (physics+math+CS)
- Outcome: 9 grad school (4 Physics Ph. D.) + 7 (industry,

government etc.)

Research with Undergraduate Students

Educational Goals:

- to engage physics, mathematics and/or computer science students together in an active learning environment of theoretical physics research
- to expose students to analytical and computational methods of quantum physics by providing open-ended investigative projects
- to foster learning through peer discussions across disciplines by involving students from two different majors (typically physics and computer science or math);
- to develop an awareness of scientific research in theoretical physics and its impact on emerging technologies

Environmental sustainability: "Extreme type-II superconductors have been identified as one of the technologies that offer powerful new opportunities for restoring the reliability, capacity and efficiency of the power grid". (DOE)

Extreme Type-II Superconductors in High Magnetic Fields

 H_{c2}(0) in Tesla comparable or large than T_c in Kelvins (HTS, nonmagnetic nickel borocarbides, MgB₂, A-15, iron arsenides)

high fields+low temperature physics differs from low-field Abrikosov-Gorkov theory Vortex (Mixed) State

Is a magnetic length

 $l = \sqrt{\hbar / eH}$

Landau Levels

• Landau level (LL) quantization of electronic energies in a magnetic field *within* the superconducting state is well defined at high fields

Description of the model

 MF-Hamiltonian for a 3-dim, weakly coupled (s-wave) superconductor in high magnetic field

$$H = \sum_{\alpha,\beta=1,2} \int \psi_{\alpha}^{\dagger}(\vec{r}) \left[\frac{1}{2m^{*}} \left(-i\hbar\vec{\nabla} + \frac{e}{c}\vec{A} \right)^{2} \delta_{\alpha\beta} + U_{\alpha\beta}(\vec{r}) - g\mu_{B}\vec{\sigma}\cdot\vec{H} - \mu \right] \psi_{\beta}(\vec{r})d^{3}r + \int \Delta(\vec{r})\psi_{\uparrow}^{\dagger}(\vec{r})\psi_{\downarrow}^{\dagger}(\vec{r})d^{3}r + H.c.$$

• order parameter $\Delta(\vec{r}) = V \langle \psi_{\uparrow}(\vec{r}) \psi_{\downarrow}(\vec{r}) \rangle$ is constructed from LLs for charge 2e

Assumptions:

- H(r) is uniform since closely packed vortex lattice, A in Landau gauge
- no Zeeman splitting, g≈0
- $U_{\alpha\beta}(\vec{r}) = \sum_{i} U_{\alpha\beta}(\vec{r} \vec{R}_{j}) \delta_{\alpha\beta}$ is a non-magnetic random impurity contribution
- Order parameter Δ(r) forms a vortex lattice if dirty but homogenous superconductor (ξ>> ξ_{imp})

Clean System in a High Magnetic Field

- Extension of BCS theory to finite temperatures and non-uniform order parameter
- Magnetic sub-lattice representation (MSR) characterized by a quasi-momentum $\mathbf{q} \perp \mathbf{H}^*$
- Eigenfunctions constructed to preserve one electronic flux per unit cell:

$$\varphi_{k_z\bar{q}n}\left(\vec{r}\right) = \sqrt{\frac{b_y}{2^n n! \sqrt{\pi} lL^3}} \exp\left(ik_z z\right) \sum_k \exp\left(i\frac{\pi b_x}{2a}k^2 - ikq_y b_y\right) \exp\left[i\left(q_x + \frac{\pi}{a}\right)x - \frac{1}{2}\left(\frac{y}{l} + q_x l + \frac{\pi k}{a}l\right)^2\right] H_n\left(\frac{y}{l} + \left(q_x + \frac{\pi}{a}\right)l\right)$$

• BdG transformation:
$$\psi_{\uparrow}(\vec{r}) = \sum_{k_z \vec{q}n} [u_{k_z \vec{q}n} c_{\uparrow k_z \vec{q}n} - v^{\dagger}_{-k_z - \vec{q}n} c^{\dagger}_{\downarrow - k_z - \vec{q}n}] \varphi_{k_z \vec{q}n}(\vec{r})$$

 $\psi_{\downarrow}(\vec{r}) = \sum_{k_z \vec{q}n} [u_{k_z \vec{q}n} c_{\downarrow k_z \vec{q}n} - v^{\dagger}_{-k_z - \vec{q}n} c^{\dagger}_{\uparrow - k_z - \vec{q}n}] \varphi_{k_z \vec{q}n}(\vec{r})$

*SD and Z. Tesanovic: "Quantized Landau Levels in Superconductors", invited review article (chapter) in the book: "The Superconducting State in Magnetic Fields: Special Topics and New Trends", Edited by Carlos A. R. Sa de Melo, Series on Directions in Condensed Matter Physics –Vol 13, 197, World Scientific, Singapore (1998).

Clean system in high magnetic field

BdG equations:

- formally a two-component Schrödinger equation for quasiparticle amplitudes
- order parameter acts as an off-diagonal potential
- self-consistency condition $\Delta(\vec{r}) = V \langle \psi_{\uparrow}(\vec{r}) \psi_{\downarrow}(\vec{r}) \rangle$

diagonal: $|-k_z - \vec{q} n\rangle_{\uparrow} \iff |k_z \vec{q} n\rangle_{\downarrow}$ off-diagonal: $|-k_z - \vec{q} n\rangle_{\uparrow} \iff |k_z \vec{q} n \pm m\rangle_{\downarrow}$ $m = 1, 2, \dots, M = \operatorname{int}(\Omega_D / \hbar \omega_c)$

diagonalizing $2(n_c+M) \times 2(n_c+M)$ matrix

Realistic systems: $n_c = int (E_F / \hbar \omega_c)$ can be few tens (H≤H_{c2}) to few thousands (H~0.5H_{c2})

Quasiparticle Excitation Spectrum

High field: formation of gapless or near gapless excitations at the Fermi level

Figure 2: Quasiparticle energies in 48th Landau level (diagonal approximation^{*}) (graphics by Michael Garmin, Goucher '10)

Figure 3: Quasiparticle energies obtained when offdiagonal pairing included^{**} (graphics by T. Villazon Goucher '14)

SD, T. P. Powell and Z. Tesanovic , PRB **66** (2002); L. Carr*, J. J. Trafton*, SD and Z. Tesanovic, PRB, **68**, (2003). **SD, J. Irwin* and T. Villazon* , in preparation.

Quasiparticle Excitation Spectrum

novel gapless superconductivity: coherent gapless excitations

GOUCHER college

- center-of-mass motion of Cooper pairs in magnetic field (s-wave and d-wave^{*})
- in 3-dim gaplessness persists to H*~(0.2-0.5)H_{c2}
- H* can be estimated from dHvA experiments in the mixed state
- Below H* gaps open-up, localized states in the vortex core (s-wave) or extended states (d-wave)
- gapless quasiparticle excitations lead to qualitatively different thermodynamics, transport, acoustic attenuation, tunneling etc.

* K. Yasui and T. Kita, Phys. Rev. B 66, 184516 (2002)

Disorder Effects in High Magnetic Fields

• Perturbative approach^{*}: Green's functions 2 x 2 Nambu matrix $\hat{G}(\vec{r};i\omega)$ for a clean superconductor is dressed via scattering

$$i\omega \rightarrow i\tilde{\omega} = i\omega - \Sigma_{nn}^{N}(i\omega)$$

$$\Delta_{nn}(\vec{q}) \rightarrow \tilde{\Delta}_{nn}(\vec{q}) = \Delta_{nn}(\vec{q}) + \Sigma^{A}_{nn}(\vec{q}, i\omega)$$

- dirty but homogenous superconductor
- non-magnetic short-range impurity potential
- diagonal approximation since no qualitative difference in excitation spectrum
- Scattering does not mix LLs ($U_0 << \hbar \omega_c$)
- *T*-matrix approach:

$$\hat{T}\left(\vec{r},\vec{r}';\omega\right) = U\left(\vec{r}\right)\delta\left(\vec{r}-\vec{r}'\right)\sigma_z + \int d\vec{r}_1 U\left(\vec{r}\right)\sigma_z\hat{G}\left(\vec{r},\vec{r}_1;\omega\right)\hat{T}\left(\vec{r}_1,\vec{r}';\omega\right)$$

 Self-energies are diagonal (with respect to MSR) *T*-matrix elements averaged over impurity random positions

SD, J. Tenebaum, J .Porembski* and K. Tata*, PRB 82 (2010)

Disorder Effects on DOS in High Magnetic Fields

non-linear complex integral equation for self-energies

where
$$u = \frac{\tilde{\omega}}{\tilde{\Delta}}$$
 and $f_{nn}(\vec{q}) = \frac{\Delta_{nn}(\vec{q})}{\tilde{\Delta}}$

g measures inverse scattering rate

c measures scattering strength

 Solution u determines density of states (DOS) of a superconductor in presence of disorder

$$N(\omega) / N(0) = \frac{1}{N(0)} Im \sum_{n=0}^{n_c} \frac{m}{4\pi^3 k_{Fn}} \int d\vec{q} \frac{u}{\sqrt{|f_{nn}(\vec{q})|^2 - u^2}}$$

Phenomenology of Superconductors at High Fields: Tunneling (STM) Current

Figure 1: Differential conductance $\sigma(V)$ for a disordered LuNi₂B₂C superconductor at zero temperature rescaled by a normal state value⁶.

Fig 1a: In a field H = 5.5 Tesla in the weak-scattering limit (c=1) vs. disorder parameter g.

Fig 1b: In a field H = 5.5 Tesla as a function of disorder parameter c with g=0.2.

Fig 1c: At different fields in the weakscattering limit (c=1) and with disorder parameter g=0.2.

Acknowledgement

Zlatko Tesanovic JHU (1956-2012)

2) Joel Tenenbaum, '07 (Boston U. Ph. D. '13)

Julian Irwin '13 (UW-Madiso<mark>n)</mark>

http://www.goucher.edu/physics

Tamiro Villazon '14 (Boston U.)