3-BODY AND 4-BODY ATOMIC COLLISIONS THEORY (THE MOST BORING TITLE EVER)

Allison Harris

ILLINOIS STATE UNIVERSITY *Illinois' first public university* DEPARTMENT OF PHYSICS

My Story (short version)

- 130 majors
- 18 grads per year
- 11 faculty
- 4 degree sequences
 - Physics
 - Computational Physics
 - Physics Engineering
 - Physics Teacher Education

ATOMIC COLLISIONS

ATOMIC COLLISIONS

• A very short historical Perspective

ERNEST RUTHERFORD

- Nobel Prize in Chemistry (1908) "for his investigations into the disintegration of the elements, and the chemistry of radioactive substances"
- Gold Foil Experiment (1908-1913)
 Some α particles are scattered Most α particles are undeflected

CLASSICAL PICTURE

ATOMIC COLLISIONS ARE GOVERNED BY QUANTUM MECHANICS

$$\left[\frac{-\hbar^2}{2m}\nabla^2 + V\right]\Psi = i\hbar\frac{\partial}{\partial t}\Psi$$

- Goal is to understand about atomic structure and fewparticle interactions
- If we know Ψ , we know everything
- Problem is that we don't know Ψ , and often times can't find Ψ

ATOMIC COLLISIONS

• Underlying problem

ATOMIC COLLISIONS

- Problems of Interest Ionization
 - Frozen Core Approximation
 - Out-of-Plane Collisions

4-BODY COLLISIONS IONIZATION

Projectile

Target atom

FROZEN CORE 3-BODY MODEL

HELIUM ATOM
 APPROXIMATED AS
 1-ELECTRON ATOM

CORE CONSISTS OF
 NUCLEUS AND
 INACTIVE ELECTRON

SINGLE IONIZATION – FROZEN CORE 3-BODY MODEL

He⁺

• USED SUCCESSFULLY FOR DECADES

SIGNIFICANTLY SIMPLIFIES CALCULATIONS

"PROBLEM": Helium has 2 electrons

WHAT EFFECT DOES THE SECOND, "INACTIVE" ELECTRON HAVE ON THE CROSS SECTION?

THE MODELS – PERTURBATION THEORY FULLY DIFFERENTIAL CROSS SECTIONS

 Position and momentum of all particles before and after collision known (or measured).

 $T = \left\langle \psi_f \left| V \right| \psi_i \right\rangle$ $FDCS \propto |T|^2$

THE MODELS

3-BODY MODEL

 $T = \left\langle \chi_f^{proj} \chi_{e_1}^{ejected} \left| V^{3-body} \right| \chi_i^{proj} \varphi_{e_1}^{helium} \right\rangle$

3-BODY AND 4-BODY MODEL DIFFERENCES

 Initial state helium atom wave functions
 3-body
 1 e⁻ wf

3-body

4-body 2 e⁻ wf with correlation

 $r_p r_{pe_1} r_{pe_2}$

4-body

3-BODY AND 4-BODY MODEL DIFFERENCES

- 3. Final state He⁺ wave functions
 3-body none
 4-body He⁺ wf
- Final state free electrons move in different potentials

FULLY DIFFERENTIAL CROSS SECTIONS (PROBABILITY)

ELECTRON PROJECTILE

PROTON PROJECTILE

Expt from: Maydanyuk et al., Phys. Rev. Lett. 94 243201 (2005)

WHAT PART OF FROZEN CORE APPROXIMATION CAUSES DIFFERENCES IN FDCS?

1. INITIAL STATE HELIUM WAVE FUNCTION

USE 4-BODY MODEL
REPLACE 2 ELECTRON HELIUM
WAVE FUNCTION WITH 2
INDEPENDENT 1-ELECTRON WAVE
FUNCTIONS

3-body

<mark>3-body</mark> 1 e⁻ wf

4-body
2 e⁻ wf with correlation

4-body

ELECTRON PROJECTILE

Ejected electron angle (°)

- INITIAL STATE HELIUM WAVE FUNCTION NOT SOURCE OF DISCREPANCIES
- REPEAT TESTING PROCEDURE FOR OTHER POSSIBLE SOURCES

- THE ANSWER IS ...
- THE TREATMENT OF THE IONIZED ELECTRON COMBINED WITH THE INITIAL STATE PERTURBATION IS THE SOURCE
- TRUE FOR ELECTRONS AND HEAVY IONS

PERTURBATION AND FINAL STATE POTENTIAL

Ejected electron angle (°)

FROZEN CORE APPROXIMATION CONCLUSIONS

 DIFFERENCES BETWEEN 3-BODY AND 4-BODY MODEL CAUSED PRIMARILY BY TREATMENT OF IONIZED ELECTRON
 SOME "ADDITIVE" EFFECT OF FINAL STATE POTENTIAL AND PERTURBATION POTENTIAL

•MORE INFO: J. PHYS. B 48, 115203 (2015). J. PHYS. B 46, 145202 (2013).

ATOMIC COLLISIONS

- Problems of Interest Ionization
 - Frozen Core Approximation
 - Out-of-Plane Collisions

CLASSICAL PICTURE

- Plane of table is called scattering plane
- Defined by initial and final momentum vectors of projectile

- Typically ionized electron stays in the scattering plane
- Can be found outside of scattering plane (off the table)
- Theory currently can't explain experimental results

3D FDCS FOR IONIZATION

C⁶⁺ + He ionization

M. Schulz, et al., Nature 422, 48 (2003).

3D FDCS FOR EXCITATION-IONIZATION

- True 4-body process
- Possible orientation effects of He⁺ ion

EXCITATION-IONIZATION OF HELIUM

Oleg Zatsarinny and Klaus Bartschat, J. Phys. B: At. Mol. Opt. Phys. 47, 06100 (2014)). See http://iopscience.iop.org/0953-4075/47/6/061001/ for video

MODELS

- FBA
 - Projectile plane wave (no interaction with target)
- 4DW No PCI
 - Projectile distorted wave (interaction with target)
- 4DW
 - All 2-particle interactions, including between outgoing free particles

3D FDCS

3D EXCITATION-IONIZATION CONCLUSIONS (PRELIMINARY)

- PROJECTILE INTERACTIONS WITH TARGET
 ENHANCE BACKWARD EMISSION OF ELECTRON
 INTERACTION BETWEEN OUTGOING PARTICLES
 FURTHER ENHANCES BACKWARD EMISSION OF
 ELECTRON
- WHY? NOT SURE YET.....

STUDENTS

Kayla Morrison Frozen Core Approximation

Tommy Esposito 3D Excitation-Ionization Evan Becker 4-Body Ionization

Annabelle Shaffer Computational Neuroscience

THANK YOU!