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General Relativity

The spacetime is treated as a classical, curved, Lorentzian manifold
which is governed by the Einstein equation,

Rµν − 1

2
R gµν − Λgµν

︸ ︷︷ ︸
system of 2nd order PDE′s

= 8πGN Tµν︸︷︷︸
source

.

Let uµ be any future-directed timelike vector, and kµ be any
future-directed null vector. Then, the stress-tensor for classical
matter is postulated to obey a group of classical energy conditions:

W.E.C. Tµνu
µ
u
ν
≥ 0

N.E.C. Tµνk
µ
k
ν
≥ 0

S.E.C. (Tµν −
1

2
Tgµν)u

µ
u
ν
≥ 0

D.E.C. T
µ

νu
ν is a timelike or null vector.
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General Relativity

The classical energy condition were the assumptions for the proofs
of the singularity theorems of Penrose and Hawking

One can still prove the singularity theorems under “weaker”
averaged energy conditions.

Let γµ(τ) be a future-directed timelike geodesic parameterized by
proper time τ , then the four-velocity tangent to the geodesic is
uµ(τ) = dγµ(τ)/dτ , and the average weak energy condition is

A.W.E.C.

∫
γ

[Tµν ◦ γ(τ )] uµ(τ )uν(τ ) dτ ≥ 0

There is also an average null energy condition;

A.N.E.C.

∫
γ

[Tµν ◦ γ(λ)] kµ(λ) kν(λ) dλ ≥ 0

M.J. Pfenning Quantum Inequalities and Particle Creation



Outline
Background

Quantum Inequalities and Particle Creation
Conclusions

General Relativity
QFT in CS
Quantum Inequalities
Motivation

Quantum Field Theory in Curved Spacetime

The spacetime is still treated as a classical, curved, Lorentzian
manifold.

We study the behavior of relativistic quantum field theories
propagating on this background spacetime. (Klein-Gordon, E&M,
Proca, Dirac, spin-2, p-forms,. . . )

To first order, we are neglecting the back reaction of the quantum
field on the curvature of the spacetime.

We are then interested in things like particle creation and the
expectation value of the stress-tensor operator for a given quantum
state |ω〉, i.e.,

〈ω|Tµν |ω〉Ren..

It is a general feature of QFT that EVERY classical energy condition
can be violated1, even the averaged ones. (Casimir vacuum state,
squeezed states, . . . )

1. H. Epstein, V. Glaser, and A. Jaffe, Il Nuovo Cim. 36, 1016 (1965).
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Quantum Inequalities

Quantum inequalities are one “natural” replacement for the classical
energy conditions.

They were first proposed by Ford2, and then proven by Ford and
Roman3 in 1995.

They found, for the two-dimensional cylinder spacetime,

τ0
π

∫ ∞

−∞

〈: Tµνu
µuν :〉ω

τ2 + τ20
dτ ≥ − 1

8πτ20
.

Various forms of quantum inequalities have been extensively studied
over the last two decades. They are derived directly from QFT
without recourse to the standard uncertainty relationships.

2. L. H. Ford, Proc. Roy. Soc. Lond. A 364, 227 (1978).
3. L. H. Ford and T. A. Roman, Phys. Rev. D 51, 4277 (1995).
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γ(τ)

Figure: A universe with a timelike geodesic
(red line) passing through a region of space
containing negative energy density (gray
region).

Normal-ordered energy density

〈: ρ :〉ω(τ) = 〈: Tαβu
αuβ :〉ω(τ)

Sampling Functions

g(τ) ∈ C∞
0 (R)

Worldline Quantum Inequality

∫

I

〈: ρ :〉ω g 2(τ) dτ ≥ −Qω0(g)

The right hand side of the
inequality is finite.
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Worldline Quantum Inequalities

The most studied form of quantum energy inequality is for averaging
along the worldline of an inertial observer:

Massless Scalar Field in 2-Dimensional Minkowski Spacetime:4

∫

I

〈: ρ(τ) :〉ω g(τ)2dτ ≥ − 1

4π

∫

I

[g ′(τ)]2dτ

Electromagnetic Field in 4-Dimensional Minkowski Spacetime:5

∫

I

〈: ρ(τ) :〉ω g(τ)2dτ ≥ − 1

8π2

∫

I

[g ′′(τ)]2dτ

Also proven for various fields in curved spacetimes. (Scalar,
Electromagnetic, Dirac, p-form, Spin-2)

4. C. J. Fewster & S. P. Eveson, Phys. Rev. D 58, 084010 (1998).
5. M. J. Pfenning, Phys. Rev. D 65, 024009 (2002).
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Motivation

In the winter of 2011, Dan Solomon4 published a paper in which he
claims to have a model that violates the worldline QI in two
dimensions.

Solomon followed this with a second paper5 where he claims to have
another model that violates the spatial QI.

t

t = 0

x x
4. D. Solomon, Adv. Stud. Theor. Phys. 5, no. 5, 227-251 (2011). 5. D. Solomon, Adv. Stud. Theor. Phys. 6, no. 6, 245-262 (2012).
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t

t = 0

x

Model Spacetime

M ≃ R× S1

Circumference of universe is L

Scalar Field with Potential
[
∂2t − ∂2x + V (x , t)

]
Φ(x , t) = 0

Potential

V (x , t) = 2ξ0δ(x)Θ(−t)

ξ0 > 0 is the coupling constant
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t

t = 0

x

OUT Region
[
∂2t − ∂2x

]
ΦOUT(x , t) = 0

Matching Solutions

ΦIN(x , 0) = ΦOUT(x , 0)

∂tΦ
IN(x , 0) = ∂tΦ

OUT(x , 0)

IN Region
[
∂2t − ∂2x + 2ξ0δ(x)

]
ΦIN(x , t) = 0
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IN Region Eigenfunctions

Odd Modes (positive frequency)

φodd(n, x , t) = (knL)
−1/2 sin(knx) e

−iknt

kn =
2πn

L
where n = 1, 2, 3, . . .

Even Modes (positive frequency)

φeven(j , x , t) = (κjL)
−1/2Aj

[
cos(κjx) +

ξ0
κj

sin(κj |x |)
]
e−iκj t

κj =
2Zj

L
where j = 1, 2, 3, . . .

Aj is a normalization constant, Zj is the j-th root of a transcendental eq.

Negative frequency modes are given by the complex conjugate.
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IN Region Eigenvalues

1

χ
Z = cot(Z ) where χ =

ξ0L

2

Π 2 Π 3 Π 4 Π 5 Π 6 Π 7 Π 8 Π 9 Π
z

-2

2

4

6

Figure: Graphical determination of the even eigenvalues from the
transcendental equation. The values L = 1 and ξ0 = 10 were used. (χ = 5)

Asymptotically,for very large j we find Zj ≃ π(j − 1) +
χ

π(j − 1)
.
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OUT Region Eigenfunctions

Odd Modes (positive frequency)

ψodd(n, x , t) = (knL)
−1/2 sin(knx) e

−iknt

Even Modes (positive frequency)

ψeven(n, x , t) = (knL)
−1/2 cos(knx) e

−iknt

kn =
2πn

L
where n = 1, 2, 3, . . .

Topological Mode (zero frequency)

ψtop.(x , t) =

√
ℓ

2L

(
1− i

t

ℓ

)

Negative frequency modes are given by the complex conjugate.
M.J. Pfenning Quantum Inequalities and Particle Creation
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Mode Functions for the Entire Spacetime

Odd Modes

Φodd(n, x , t) = (knL)
−1/2 sin(knx) e

−iknt

Even Modes

Φeven(j , x , t) =

{
φeven(j , x , t) for t ≤ 0,

φevenOUT (j , x , t) for t > 0.

φevenOUT(j , x , t) = α0j ψ
top.(x , t)− β0j ψtop.(x , t)

+

∞∑

n=1

[
αnj ψ

even(n, x , t)− βnj ψeven(n, x , t)
]

α0j , β0j , αnj , and βnj are Bogolubov coefficients
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Canonical Second Quantization Method

Classical Physics of Model

In the Hamiltonian formulation, the observables are the real–valued
field Φ(x , t) and the canonically conjugate momenta ∂tΦ(x , t).

Φ(x , t) =

∞∑

n=1

[
anΦ

odd(n, x , t) + anΦodd(n, x , t)
]

+

∞∑

j=1

[
bjΦ

even(j , x , t) + bjΦeven(j , x , t)
]

In addition, define a fully anytisymmetric bilinear form

σ(Φ1,Φ2) ≡
∫

S1

i∗(Φ1∂tΦ2 − Φ2∂tΦ1)

Together, these two things yield a suitable symplectic phase space.

M.J. Pfenning Quantum Inequalities and Particle Creation
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Second Quantization of Model

Promote the field to a self-adjoint operator.

Φ(x , t) =

∞∑

n=1

[
anΦ

odd(n, x , t) + a

†
nΦ

odd(n, x , t)
]

+

∞∑

j=1

[
bjΦ

even(j , x , t) + b

†
j Φ

even(j , x , t)
]

a

†
n and b†

j are the operators which create particles.
an and bj are the operators which annihilate particles.

Commutator Relations

[an, a
†
m] = δnmI and [bj ,b

†
j′ ] = δjj′ I

M.J. Pfenning Quantum Inequalities and Particle Creation
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Canonical Second Quantization Method

State Space

|0〉 is the IN vacuum state. (No particles present)

|1n〉 one particle in the antisymmetric mode with eigenvalue n.

|2j〉 two particles in the symmetric mode with eigenvalue j .

|1n, 1j〉 two particles present in different modes.

Creation Operator

a

†
n|0〉 = |1n〉

a

†
n|1n〉 =

√
2|2n〉

a

†
n|2j〉 = |1n, 2j〉

a

†
n|1n, 1j〉 =

√
2|2n, 1j〉

Annihilation Operator

an|0〉 = 0

an|1n〉 = |0〉
an|2j〉 = 0

an|1n, 1j〉 = |1j〉
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Alternative Representation for OUT Region

Second Representation for the Field Operator

Ψ(x , t) = ã ψtop.(x , t) + ã

† ψtop.(x , t) +

∞∑

n=1

[
ãn ψ

odd(n, x , t)

+ã†n ψ
odd(n, x , t) + b̃n ψ

even(n, x , t) + b̃

†
n ψ

even(n, x , t)
]
.

Second Set of Operators

ã

† and ã

ã

†
n = a

†
n and ãn = an

b̃

†
n 6= b

†
j and b̃n 6= bj

Second Set of States

|0̃〉 is the OUT vacuum state.

|1̃n〉 is a one particle state.

|2̃n〉 is a two particle state.

|1̃n, 1̃n′〉 is a two particle state.
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Quantum Model

t

t = 0

x

OUT Region (t > 0)

Field Operators: Φ(x , t) and Ψ(x , t)
Vacuum States: |0L〉 and |0̃L〉
Creation and annihilation operators ×2.

Matching Solutions (t = 0)

The operators and states between the two
representations are linked by the Bogolubov
coefficients

IN Region (t < 0)

Field Operator: Φ(x , t)
IN Vacuum State: |0L〉
Creation and annihilation operators.
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Particle Creation

Before t = 0, let the particle state of the universe be the IN vacuum
state |0L〉.
In the Heisenberg picture, the operators evolve in time while the
states are time-independent, therefore, the state in the OUT region
remains |0L〉 forever.
However, the “TRUE” vacuum in the OUT region is |0̃L〉. The
“TRUE” particle states are the ones with respect to the
tilded-operators.

Since the IN vacuum state |0L〉 can be re-expressed as a linear
superposition of the “TRUE” particles for the OUT region, we find
that for times t > 0 there is non-zero probability of finding “TRUE”
even-mode particles in the OUT region.

This is interpreted as PARTICLE CREATION due to the shutting
off of the potential.

No “TRUE” odd-mode particles are created in the shut-off.

M.J. Pfenning Quantum Inequalities and Particle Creation
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Recap of Quantum Model

t

t = 0

x

OUT Region (t > 0)

Particle State: |0L〉
OUT Vacuum State: |0̃L〉
Particles are present.

Potential Shutoff (t = 0)

The energy for the production of the
particles comes out of the vacuum.

IN Region (t < 0)

Particle State: |0L〉
IN Vacuum State: |0L〉
No particles are present.
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Casimir Effect

t

t = 0

x

OUT Region (t > 0)

〈0̃L|Tµν |0̃L〉Ren. =

(
− π

6L2
+

1

4ℓL

)
δµν

Expression for a potential free cylinder
spacetime.

IN Region (t < 0)

〈0L|Tµν |0L〉Ren. =
(
− π

6L2
+

A
L2

)
δµν ,

This holds everywhere except at the
location of the delta-function potential.

A > 0 and is a function of χ.

M.J. Pfenning Quantum Inequalities and Particle Creation
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Renormalized Stress-Tensor (t > 0)

After an enormous amount of algebra, one finds that the renormalized
expectation value of the stress-tensor operator for the IN vacuum state
on the OUT region is

〈0L|Tµν |0L〉Ren. =

(
− π

6L2
+

B − C
L2

)
δµν

+
C
2L2

∞∑

n=−∞

[
δ

(
t + x

L
− n

)
+ δ

(
t − x

L
− n

)]
δµν

+
C
2L2

∞∑

n=−∞

[
δ

(
t + x

L
− n

)
− δ

(
t − x

L
− n

)]
σµν ,

where

B = B(χ) ≥ 0, C =
χ

π
, and σµν =

(
0 1
1 0

)
.

All of the expressions above are independent of ℓ!
M.J. Pfenning Quantum Inequalities and Particle Creation
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Classical Energy Conditions

All the classical energy conditions for this model can fail. For
example, WEC

〈0L|Tµν |0L〉Ren.uµuν � 0

whenever
B(χ)− C(χ) < π

6
.

Actually, all the classical energy conditions fail simultaneously under
the above condition.
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ΞL
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Figure:
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Quantum Inequality

Recall, the QI is a constraint on the difference of expectation values for
two separate states. Therefore, we choose to look at the difference for
the states |0L〉 and |0̃L〉. Define

〈∆ρ〉0L(τ) ≡
[
〈0L|Tµν |0L〉 − 〈0̃L|Tµν |0̃L〉

]
uµuν

then

The worldline QI for R× S1

∫

R

〈∆ρ〉0L [g(τ)]
2
dτ ≥ 1 + v2

1− v2

(
− 1

4ℓL

)∫

R

[g(τ)]
2
dτ − Q(g)

The left hand side evaluates to

L.H .S . =
1 + v2

1− v2

(
− 1

4ℓL

)∫

R

[g(τ)]
2
dτ + (positive terms)

The QI is satisfied for all inertial observers!
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Outstanding Issues

t

x

Remaining to do. . .

analytically prove or disprove the behaviors
seen in the numerical simulations.

Does A = B ?

Is B − C ≤ −π
6
for all values of χ?
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Conclusions

t

x

So far, I have...

determined a complete basis of
eigenfunctions for the IN and OUT

regions which can be quantized,

second quantized the model and
determined the particle creation at the
moment that the potential collapses,

calculated the renormalized
stress-tensor and shown it can violate
all the classical energy conditions

and proven that the stress-tensor obeys
the worldline QI, contrary to what
Solomon claims.
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Thank You.

Questions?
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Mathematical Curiosity?

In several places in my work, I kept coming across series of the form

Fp(χ) = χ2
∞∑

j=1

A2
j

Z
p
j

where the range of χ is in [0,∞), the power p > 1, the

A2
j =

Z 2
j

Z 2
j + χ2 + χ

, and Zj = χ cot(Zj).

The Fp ’s satisfy a recurrence-like formula

(χ2 + χ)F ′
p+2(χ) + (p − 1)Fp+2(χ) + F ′

p(χ)−
2

χ
Fp(χ) = 0.

Interestingly, there are analytic expressions for p an even integer

F2(χ) =
χ

2
, F4(χ) =

1

2
, F6(χ) =

1

2

(
1

χ
+

1

3

)
, . . .
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IN Region Eigenfunctions (graphical)
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Figure: Snapshots of the first three odd eigenfunctions (top row in blue) and
the first three even eigenfunctions (bottom row in red). The values L = 1 and
ξ0 = 10 were used.
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Bogolubov Coefficients

Aj ≡ cos(Zj)

[
1 +

sin(Zj) cos(Zj)

Zj

]−1/2

Yj,0 ≡
√
2χAj

Z 2
j

Yj,n ≡ 2χAj

Z 2
j − (πn)2

∞∑

j=1

Yj,mYj,n = δmn

α0j =
1

2
√
κjℓ

(κjℓ+ 1)Yj,0 β0j =
1

2
√
κjℓ

(κjℓ− 1)Yj,0

αnj =
1

2

√
kn

κj

(
κj
kn

+ 1

)
Yj,n βnj =

1

2

√
kn

κj

(
κj
kn

− 1

)
Yj,n
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Number of Even-Mode Particles Created

〈0|Ñn|0〉 =
∞∑

j=1

|βnj |2

n ξ0 = 1 ξ0 = 5 ξ0 = 10 ξ0 = 100

0 0.023987 0.255469 0.416834 1.082297

1 0.003875 0.024742 0.047086 0.198755

2 0.000665 0.005465 0.011781 0.070152

3 0.000231 0.002154 0.004975 0.036841

4 0.000108 0.001091 0.002639 0.022904

5 0.000059 0.000637 0.001594 0.015659

6 0.000036 0.000408 0.001048 0.011386

Table: Values generated using L = 1 and summing the first 500 terms in the
series using Mathematica. The n = 0 values are determined with ℓ = L.
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