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General models—Often fundamental limits

The most reductionist level—->Molecular modeling

Modeling a single process

4 Phenomenology

Models of experiments .
“~a Information

limits

My own work on superresolution



How | got Iinto biophysics
« 1997: West, Brown, Enquist (mostly) explain this:
4 rr/F

™~

[}

=,

—

¢ ;L. Slope =3/4

2

"

(&,

=

)

% |

o

S

—

g e gl & 1.
l l [ |
1 0 1 2 3
LOG MASS (kg)

e But heat loss o« area «c m23?2??



Model Assumptions

1) Fractal network of blood vessels
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(Caveats)

* The 3 scaling law Is more accurate for large
mammals than small ones.

* The fluid dynamics assumptions in WBE are
only valid asymptotically.

 WBE errs in wrong directions for small
mammals.

e More accurate models fix It.



Biophysics of fundamental
guestions

Life at low Reynolds number

E. M. Purcell
Lyman Laboratory, Harvard University, Cambridge, Massachusetts 02138
American Journal of Physics, Vol. 45, No. 1, January 1977
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Biophysics of fundamental
guestions
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Other fundamental results

* Optimal ratio of macromolecules to small
molecules in bacteria (Vazquez, 2010)

* Morphogen gradients optimized against noise
(Saunders, 2009)

* LimIts to concentration sensing and chemotaxis
(Endres, Levine, Wingreen, etc.)

» Leaf size bounded by diminishing returns to
resource investment and flow impedance of tall
trees (Jensen and Zwieniecki, PRL, 2013)

And many, many more...



Not all biophysics theory is done at
50,000 feet




Not all biophysics theory is done at
50,000 feet




Biophysics of particular systems

* Often borrow approaches from soft matter
physics (espeually cell membranes,

* Cell-cell
interactions
* Physiolo
Moecuar, Membranes & . Moscles
_ Molecular Interactions ~ CytOskeleton + Fluid mechanics
‘ e transfer ~ modeling * Nervous system
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Biophysics of particular systems

* Often borrow approaches from soft matter
physics (especially cell membranes,

» Cell-cell
interactions
Molecular Membranes & . Hysiolooy
crowding & * Muscles .
Molecular  |nteractions Cytoskeleton * Fluid mechanics
‘ e transfer ~modeling ‘ ‘ o Nervous system
| | | | | | >
0.1 nm 1 nm 10 nm 100 nm 1um 10 um
.

Reaction-Diffusion Models
Solvable for undergrads w/ software



Example: Tumor Angiogenesis
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Relation to vessel morphology

Parent Capillary 5 Parent Capillary
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» Step-like gradients lead to longer migration times
« More tortuous morphology, fewer vessels reach tumor

« Consistent with differential potencies of VEGF g4 vs.
VEGF 45



Who does what

Fundamental limits: Primarily physicists

Membranes, cytoskeletons, ordering,
Interactions: Primarily physicists

Reaction-diffusion models: Physicists and
mathematicians

Cascades of reactions: Primarily
mathematicians

Developmental biology: Mostly
mathematicians, and also Bill Bialek



Molecular simulation

* Mostly done by chemists

* Afew physicists—Note on history of the field

* Enough canned and standardized code that you
can get undergrads involved on some level.

* Now for some slides from Paul Nerenberg
(formerly of Claremont Colleges, about to start
at CSU LA)



What are molecular dynamics
(MD) simulations?

* Basic idea: simulate molecules in time by
calculating forces at each instant and applying
Newton’s second law

* Forces are derived from a potential energy function
or force field

* A fundamental trade-off: accuracy of the potential
energy function vs. sampling



The various flavors of MD




The MARTINI force field

8 Thr
l Trp
e Tyr
8 Val
_
apolar intermediate polar charged

Figure 1. Coarse-grained representation of all amino acids.
Different colors represent different particle types.

L Monticelli et al., J Chem Theory Comput (2008).



CG MD in a nutshell

* Quasi-atoms are spheres of mass m;, charge g;, and van der
Waals size o;

* Potential energy function (force field):
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Umbrella sampling

* Enhanced conformational sampling
method along reaction coordinate:

can traverse large energy barriers biasing
potential

between states

* Create a biasing potential to sample
small regions of the reaction W
coordinate

* Sample many windows to cover full
range of reaction coordinate

* Unbias data at the end to recover
underlying energy landscape (WHAM)



Typical graphics

N-terminus

AB42

C-terminus

Exofacial leaflet
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Lipid bilayer Cytofacial leaflet

N Liguori et al., Biophys J (2013).



Phenomenology and Information
Limits

* Biological systems are messy

* Predicting the sorts of signals that we'll see
from an underlying model/mechanism is hard

 Examples: Protein folding, random walks,
Imaging



Random Walks

2001

« Simple diffusion is simple

 Anomalous diffusion: Often ¢ 100l \
modeled with Continuous Time
Random Walk

—Interesting for power-law
distribution of wait times and/or
step sizes

P
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—Even more interesting for
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spatially varying reaction rates

Yuste, Abad, Lindenberg, PRE, 2010



PRL 110, 158105 (2013)

Single molecule experiments
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Theory of superresolution

* Every new technique requires a theory to
predict the maximum information obtainable

 That's what I've been doing



Single-Molecule Localization

*2 fluorescent molecules close
together would look like this
under microscope
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Single-Molecule Localization

*2 fluorescent molecules close
together would look like this
under microscope

What if only one at a time is
shining?

Find centers and infer
molecule locations
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Do this enough times, and eventually you know where every molecule is!




Sequential Localization

fluorescence

Not all the molecules in a .
crowded image are “on” at .

¢ Time = 1
once.

_ o (no overlaps)
Localize those that are on °
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Sequential Localization

fluorescence

Not all the molecules in a .
crowded image are “on” at . o
Time =1
once.
[

: ° (no overlaps)
Localize those that areon === ~.-~°¢

Repeat for different set of on . Time = 2
molecules N
]
i (no overlaps)

2 close molecules are “on” . s
. Ime =
at the same time: Need to . ’
discard that image. .
o® (1 overlap
to reject)



Noise and Single-Molecule
Resolution

* No image is perfect

* We get photons one at a time, in an unpredictable
sequence.

50 photons
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Noise and Single Molecule
Resolution

* No image is perfect
* We get photons one at a time, in an unpredictable

sequence.
50 photons 200 photons 800 photons 2500 photons
Best possible precision in A

estimate of molecular position: \/# of photons collected



Simultaneous Localization

Use software to
estimate many
positions at once,
from overlapping
iImages.




Multifluorophore Localization

(b) Single emitter fitting  (¢) Two emutter fitting (d) Three enutter fitting (&) Four enutter fitting

Huang, Lidke, et.
al. 2011

Select model that best matches data

Caution: You can always add more fluorophores
with low intensity to “"mop up” residuals



Motive: Speed

Max Normalized Min. # Speed
Fluorophores frames needed Improvement

per Frame

2 0.44 2.27

4 0.19 5.26

10 0.023 43.5

Small, Biophysical Journal, 2009



What about resolution?

 MLE software can localize multi-fluorophore
Images w/ theoretical limit to precision.

* Most approaches consider images of N~5
fluorophores at once.

* Densities up to 8-10 fluorophores/umz.



What about resolution?

 MLE software can localize multi-fluorophore
Images w/ theoretical limit to precision.

* Most approaches consider images of N~5
fluorophores at once.

* Densities up to 8-10 fluorophores/umz.

[s this the limit?



Percolation Theory

* |n a system with randomly-placed components,

how many do you need to be assured a path
from side to side?
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Why Is there interest in percolation?

e Porous flow
e Electrical conduction
e Disease

e Forest fires

~ Computer
Wi simulations of
8 wildfire risk in
. % different land use
scenarios.

Aerial photo of rural Spain



Why did | get into percolation?
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Why should microscopists care
about percolation?

*Low density
Small clusters are independent

*High density (percolation)
Many molecules are coupled

*Position estimates have higher
variance.




Continuum Percolation

* We don't need to do this on graph paper.

HL  C

Low coverage High coverage (267.6%)



Boundary Issues

Percolation—Spanning Cluster—Images that
can't be contained in small windows

Tractable estimation
problems.

"oy

Regions with “spill-over”

B Intractable




Boundary Issues (2)

* Fluorophore outside the window cannot be
estimated well

o But it still biases other estimates

Schematic
-
Spill-over
photons from - .
molecule X -
outsidle ROI
-

(blue box)



Boundary Issues (2)

* Fluorophore outside the window cannot be
estimated well

o But it still biases other estimates

Schematic
Bias in position
estimates due to
spill-over -

photons.



When Is overlap inevitable?

* Easy answer: Above continuum percolation
threshold (67.6% coverage).

* os=density of circles
=4.52 neighbors/z(2r)2 -
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When Is overlap inevitable?

* Easy answer: Above continuum percolation
threshold (67.6% coverage).
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What is r?



Radius for overlaps

e W? 2W?

o Useful answer: “Close enough to matter”

Bias = std. dev. position estimate



Bias and Uncertainty

e Cut off a Gaussian PSF at

r and overlap with another
PSF

— 2w’
W e

blas=———
\/275

\\\\\\\\\\\\\\\\

w / ROI

Std. deV. — Spi"-OVer
\/N photons




r depends on error tolerance

bias < a*std. dev.

N photons
2
2o

r=wylog



Prediction

4 8N NA”

o=Density<— =
T

7¥210g N photons

2
2o



Prediction

Depends on Depends on PSF,
percolation model, 0.28 If approximating
1.13 for circles Airy w/ Gaussian

\ 875[%7]NA2

_ - N
o =Density<— =
Ty

N
7\~2 10 photons
. 2o’



Prediction

Depends on Depends on PSF,

percolation model, 0.28 If approximating
Airy w/ Gaussian

1.13 for circles \ *
8N NA”

O = Density < i > =

Itr

N
7\,2 10 photons
. 2o’

#'s: 647 nm light (Alexa), 1.45 NA objective, ~750 photons,
o=1
5=8.35 fluorophores/um* before edge effects matter
—Near-exact match to Huang & Lidke 2011



Interpretation:

* Higher density: molecules
not in middle of ROl are mis-
localized.

* For <20 fluorophores/ROI
(typical)
and
density > p.

majority of fluorophores
contaminated with spill-over




Conseqguence: Speed

Max Normalized Min. # Speed
Fluorophores frames needed improvemen
per Frame

10 0.023 43.5

Small, Biophysical Journal, 2009




Localization precision

e Fundamental Limit: Cramer-Rao Lower Bound
(CRLB)

 CRLB calcs can be done for multi-flourophore
fits (e.g. Yi Sun, JBO, 2013)



Localization precision

e Fundamental Limit: Cramer-Rao Lower

Bound (CRLB)

 CRLB calcs can be done for multi-flourophore
fits (e.g. Yi Sun, JBO, 2013)
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* Percolation: ~4-5 neigh

nors per fluorophore

 Can a “mean-field” moo
precise calculations?

el get close to more



Thompson, Larson, Webb 2002

e Formula not exact, but often useful.

* For spill-over background and pure shot noise,
formula simplifies to:

Y T
VﬂI‘(}C):K 1+ 1 pixel n pixel

N\ \/?”/2 | N

Typical #'s: w~0.5r, a~0.4r

std. dev.(multi-molecule) ~ 1.3 std. dev. (single molecule)



Thompson, Larson, Webb 2002

e Formula not exact, but often useful.

* For spill-over background and pure shot noise,
formula simplifies to:

2
W

Var(x)zﬁ

/

\

1+

Typical #'s: w~0.5r, a~0.4r

4 nw apixel

Var?

\

/

std. dev.(multi-molecule) ~ 1.3 std. dev. (single molecule)

—Off from Sun by ~2



Simplest cluster model

Explicitly construct Fisher information
matrix

Central: 4 equidistant neighbors @ 2w

—Off-diagonals dominated by r=w,
—diagonal/e®”

Corners:1 neighbor @ w (diagonal/e®)
2 neighbors @ V2w (diagonal/e)
1 neighbor @ 2w (diagonal/e?)

Std. Dev. Of center = 2.1*Single-Molecule
Case!



FWHM CHELE (nm)

From Sun, 2013
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FWHM CHELE (nm)

From Sun, 2013

m— (Gaussian

5 ~8 10 15 20
Density {emittersmmz}

25

& e imieimrmi =] Single

Molecule
CRLB



Conclusions

* Multi-fluorophore localization performance
degrades due to percolation effects

» | ocalization precision: fluorophore has an
average environment of 4 neighbors

* Speed iImprovements beyond ~7 unlikely w/o
accuracy trade-offs and/or large ROls
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