Quantum Mechanics without Hilbert Space

Art(H)ur Tsobanjan

Overview

- The talk is about an algebraic-ish view of quantum mechanics, that trades off some "completeness" for "control".
- Can think of it as complementary to Hilbert space constructions

<u>OR</u>

- As more basic (primary) than a Hilbert space representation
- This perspective helps me think about the Problem of Time (if time permits)
- I will showcase the power of this view-shift in the semiclassical regime

Motivation from quantum dynamics

States evolve

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} |\psi\rangle = \hat{H} |\psi\rangle$$

Operators evolve

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t}\hat{A} = \left[\hat{A}, \hat{H}\right]$$

Motivation from quantum dynamics

States evolve

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} |\psi\rangle = \hat{H} |\psi\rangle$$

Operators evolve

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t}\hat{A} = \left[\hat{A}, \hat{H}\right]$$

Either way, expectation values obey

$$\frac{\mathrm{d}}{\mathrm{d}t} \langle \psi | \hat{A} | \psi \rangle = \frac{1}{i\hbar} \langle \psi | \left[\hat{A}, \hat{H} \right] | \psi \rangle$$

Motivation from quantum dynamics

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} |\psi\rangle = \hat{H} |\psi\rangle$$

Operators evolve

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t}\hat{A} = \left[\hat{A}, \hat{H}\right]$$

Either way, expectation values obey

$$\frac{\mathrm{d}}{\mathrm{d}t} \langle \psi | \hat{A} | \psi \rangle = \frac{1}{i\hbar} \langle \psi | \left[\hat{A}, \hat{H} \right] | \psi \rangle$$

This last equation can be viewed as an ODE on the function on the space of quantum states $\left<\hat{A}\right>(|\psi\rangle):=\langle\psi|\hat{A}|\psi\rangle$

Since RHS depends on a different function $\left\langle \left[\hat{A},\hat{H}\right]\right\rangle (|\psi\rangle)$ we need additional equations to complete the system.

Quantum dynamics as a system of ODEs

• Suppose $\left[\hat{A},\hat{H}\right]=i\hbar\hat{A}_{1}$, $\left[\hat{A}_{1},\hat{H}\right]=i\hbar\hat{A}_{2}$, etc.

• Then get an infinite system of coupled ODEs in functions $\langle \hat{A} \rangle$, $\langle \hat{A}_1 \rangle$, $\langle \hat{A}_2 \rangle$... which can be solved in principle $\begin{cases} \frac{\mathrm{d}}{\mathrm{d}t} \langle \hat{A} \rangle = \langle \hat{A}_1 \rangle \\ \frac{\mathrm{d}}{\mathrm{d}t} \langle \hat{A}_1 \rangle = \langle \hat{A}_2 \rangle \\ \frac{\mathrm{d}}{\mathrm{d}t} \langle \hat{A}_2 \rangle = \dots \\ \dots \end{cases}$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\langle \hat{A} \right\rangle = \left\langle \hat{A}_1 \right\rangle$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\langle \hat{A}_1 \right\rangle = \left\langle \hat{A}_2 \right\rangle$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\langle \hat{A}_2 \right\rangle = \dots$$

Quantum dynamics as a system of ODEs

• Suppose $\left[\hat{A},\hat{H}\right]=i\hbar\hat{A}_{1}$, $\left[\hat{A}_{1},\hat{H}\right]=i\hbar\hat{A}_{2}$, etc.

ODEs in functions $\langle \hat{A} \rangle$, $\langle \hat{A}_1 \rangle$, $\langle \hat{A}_2 \rangle$... $\begin{cases} \frac{\mathrm{d}}{\mathrm{d}t} \langle \hat{A}_1 \rangle = \langle \hat{A}_2 \rangle \\ \frac{\mathrm{d}}{\mathrm{d}t} \langle \hat{A}_1 \rangle = \langle \hat{A}_2 \rangle \end{cases}$ which can be solved in principle. Then get an infinite system of coupled

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\langle \hat{A} \right\rangle = \left\langle \hat{A}_1 \right\rangle$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\langle \hat{A}_1 \right\rangle = \left\langle \hat{A}_2 \right\rangle$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\langle \hat{A}_2 \right\rangle = \dots$$

$$\dots$$

Some problems:

- \hat{A} , \hat{A}_1 , \hat{A}_2 , ..., may not be well defined (domain issues)
- · When viewed as functions on the Hilbert space, $\langle \hat{A} \rangle$, $\langle \hat{A}_1 \rangle$, $\langle \hat{A}_2 \rangle$... are not continuous

Need a slight change of perspective to make this work.

Main idea of the approach

- Work with some sufficiently large algebra of "observables" \mathcal{A} = unital, associative, complex *-algebra.
 - Not the algebra of all possible operators on Hilbert space, rather a "quantization" of some classical algebra of functions, that resolve phase-space points.
- For example, for a particle in 1-D, can take \mathcal{A} to contain complex polynomials in \hat{x} and \hat{p} , subject to $[\hat{x}, \hat{p}] = i\hbar \mathbf{1}$
- Let Γ_Q be the space of all complex-linear functionals on ${\mathcal A}$
- For example, a state $|\psi\rangle$ in any representation of $\mathcal A$ that is in the domain of all its elements induces a linear functional on $\mathcal A$ via

$$\omega\left(\hat{A}\right) := \langle \psi | \hat{A} | \psi \rangle$$

What kind of a space is Γ_Q ?

- Not a Hilbert space, all of the following are included: $\langle \psi | \hat{A} | \psi \rangle$, ${\rm Tr} \left(\hat{\rho} \hat{A} \right)$, $\langle \psi | \hat{A} | \phi \rangle$, and other operations.
- It is a vector space $(\omega_1 + \omega_2) \left(\hat{A} \right) = \omega_1 \left(\hat{A} \right) + \omega_2 \left(\hat{A} \right)$
- Assume we restrict to normalized "states" where $\omega\left(\hat{\mathbf{1}}\right)=1$ work with an affine subspace $\left(\omega_1-\omega_2\right)\left(\hat{\mathbf{1}}\right)=0$
- The states are not in general positive, typically need to impose $\omega\left(\hat{A}\hat{A}^*\right) \geq 0$ (for real spectra of observables)
- Options for linking to Hilbert space:
 - Treat Γ_Q as an auxiliary tool, while working with a specific Hilbert space, impose relevant restrictions on states
 - Any positive linear functional can be used to construct a Hilbert space representation (GNS construction)

Structure of Quantum Phase space Γ_{Q}

• Each $\hat{A} \in \mathcal{A}$ naturally corresponds to a function $\langle \hat{A} \rangle$ on Γ_{Q} (due to vector space duality between the two)

$$\langle \hat{A} \rangle (\omega) := \omega \left(\hat{A} \right)$$

- These functions are linear and hence continuous (relative to the vector space topology on Γ_Q)
- They resolve points of $\Gamma_{\rm O}$ (again due to duality)
- Analogy with classical mechanics goes further as Γ_Q is equipped with a Poisson bracket on these functions

$$\left\{ \left\langle \hat{A} \right\rangle, \left\langle \hat{B} \right\rangle \right\}_{\mathcal{O}} := \frac{1}{i\hbar} \left\langle \left[\hat{A}, \hat{B} \right] \right\rangle$$

• Extends to (all) other functions on Γ_Q (through requiring linearity in both arguments and the "product rule")

All of this is directly relevant to quantum time evolution.

Analogue of Schrödinger equation on Γ_{Q}

• A distinguished Hamiltonian element H in $\mathcal A$ creates a one-parameter flow on $\Gamma_{\mathbb Q}$, such that

states evolve according to $\frac{\mathrm{d}}{\mathrm{d}t}\omega\left(\hat{A}\right):=\frac{1}{i\hbar}\omega\left(\left[\hat{A},\hat{H}\right]\right)$

• Along this flow functions on $\Gamma_{\rm Q}$ evolve as

$$\frac{\mathrm{d}}{\mathrm{d}t}f = \left\{ f, \left\langle \hat{H} \right\rangle \right\}_Q$$

Analogue of Schrödinger equation on Γ_{Q}

• A distinguished Hamiltonian element H in $\mathcal A$ creates a one-parameter flow on $\Gamma_{\mathbb Q}$, such that

states evolve according to $\frac{\mathrm{d}}{\mathrm{d}t}\omega\left(\hat{A}\right):=\frac{1}{i\hbar}\omega\left(\left[\hat{A},\hat{H}\right]\right)$

• Along this flow functions on $\Gamma_{\rm Q}$ evolve as

$$\frac{\mathrm{d}}{\mathrm{d}t}f = \left\{ f, \left\langle \hat{H} \right\rangle \right\}_{Q}$$

• Looking back at our "motivation". This is now a well-formulated system of ODEs on $\Gamma_{\mathbf{Q}}$ (so long as $\hat{H},\,\hat{A},\,\hat{A}_1,\,\hat{A}_2,\,\ldots\in\mathcal{A}$)

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}t} \left\langle \hat{A} \right\rangle = \left\langle \hat{A}_1 \right\rangle \\ \frac{\mathrm{d}}{\mathrm{d}t} \left\langle \hat{A}_1 \right\rangle = \left\langle \hat{A}_2 \right\rangle \\ \frac{\mathrm{d}}{\mathrm{d}t} \left\langle \hat{A}_2 \right\rangle = \dots \\ \dots \end{cases}$$

• Can it ever be solved? Yes, e.g. if decouples into finite subsystems, OR if can be perturbatively truncated.

Analogue of Schrödinger equation on $\Gamma_{\rm O}$

• A distinguished Hamiltonian element H in \mathcal{A} creates a one-parameter flow on Γ_{Q} , such that

states evolve according to
$$\frac{\mathrm{d}}{\mathrm{d}t}\omega\left(\hat{A}\right):=\frac{1}{i\hbar}\omega\left(\left[\hat{A},\hat{H}\right]\right)$$

• Along this flow functions on $\Gamma_{\rm O}$ evolve as

$$\frac{\mathrm{d}}{\mathrm{d}t}f = \left\{ f, \left\langle \hat{H} \right\rangle \right\}_Q$$

 Looking back at our "motivation". This is now a well-formulated system of ODEs on $\Gamma_{\rm O}$

(so long as
$$\hat{H},\,\hat{A},\,\hat{A}_1,\,\hat{A}_2,\,$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\langle \hat{A} \right\rangle = \left\langle \hat{A}_1 \right\rangle$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\langle \hat{A}_1 \right\rangle = \left\langle \hat{A}_2 \right\rangle$$

Note: all of this carries over if we replace H by e.g. a symmetry action generator.

 Can it ever be solved? Yes, e.g. if decouples into finite subsystems, OR if can be perturbatively truncated.

Application: Expansion in a <u>semiclassical state</u> (for finitely generated algebra A)

- One definition: "a state "sharply peaked" about some point in the classical phase space."
- E.g. for a 1-D particle, a Gaussian can be narrow in both position and momentum

Application: Expansion in a <u>semiclassical state</u> (for finitely generated algebra A)

- One definition: "a state "sharply peaked" about some point in the classical phase space."
- E.g. for a 1-D particle, a Gaussian can be narrow in both position and momentum

- Select a "small" scale R_x for x and R_p for p, with R_x $R_p = \hbar/2$ and work with re-scaled quantities $\bar{x} := \frac{x}{R_x} \sqrt{\hbar/2}$ and $\bar{p} := \frac{p}{R_p} \sqrt{\hbar/2}$, which have units of $\sqrt{\hbar}$
- So, there are Gaussians with $\Delta \bar{x}$ and $\Delta \bar{p} \sim \sqrt{\hbar}$

Semiclassical perturbation theory

 Δx and Δp aren't the only parameters characterizing the spreading of the state. Define *generalized moments*:

$$\Delta \left(x^a p^b \right) := \left\langle (\hat{x} - \langle \hat{x} \rangle)^a \left(\hat{p} - \langle \hat{p} \rangle \right)^b \right\rangle_{\text{Weyl}} \qquad \begin{array}{c} \text{Terms inside are totally symmetrized} \\ \text{Symmetrized} \end{array}$$

Semiclassical perturbation theory

 Δx and Δp aren't the only parameters characterizing the spreading of the state. Define *generalized moments*:

$$\Delta \left(x^a p^b \right) := \left\langle (\hat{x} - \langle \hat{x} \rangle)^a \left(\hat{p} - \langle \hat{p} \rangle \right)^b \right\rangle_{\text{Weyl}} \qquad \begin{array}{c} \text{Terms inside are totally symmetrized} \\ \text{Symmetrized} \end{array}$$

Some useful properties:

- Specifying $\langle \hat{x} \rangle$, $\langle \hat{p} \rangle$ and moments is exactly equivalent to specifying values assigned to e.g. $\left\langle \hat{x}^a \hat{p}^b \right\rangle \to$ **specifies** state
- Neat relation to values assigned to symmetrized monomials

$$\left| \left\langle \hat{x}^a \hat{p}^b \right\rangle_{\text{Weyl}} = \left\langle \hat{x} \right\rangle^a \left\langle \hat{p} \right\rangle^a + \sum_{n=0}^a \sum_{m=0}^b \frac{1}{a!b!} \frac{\partial^{n+m} (x^a p^b)}{\partial x^n \partial p^m} \right|_{\substack{x = \langle \hat{x} \rangle \\ p = \langle \hat{p} \rangle}} \Delta \left(x^n p^m \right)$$

Semiclassical perturbation theory

 Δx and Δp aren't the only parameters characterizing the spreading of the state. Define *generalized moments*:

$$\Delta \left(x^a p^b \right) := \left\langle (\hat{x} - \langle \hat{x} \rangle)^a \left(\hat{p} - \langle \hat{p} \rangle \right)^b \right\rangle_{\text{Weyl}} \qquad \begin{array}{c} \text{Terms inside} \\ \text{are totally} \\ \text{symmetrized} \end{array}$$

Some useful properties:

- Specifying $\langle \hat{x} \rangle$, $\langle \hat{p} \rangle$ and moments is exactly equivalent to specifying values assigned to e.g. $\left\langle \hat{x}^a \hat{p}^b \right\rangle \to$ **specifies** state
- Neat relation to values assigned to symmetrized monomials

$$\left\langle \hat{x}^a \hat{p}^b \right\rangle_{\text{Weyl}} = \left\langle \hat{x} \right\rangle^a \left\langle \hat{p} \right\rangle^a + \sum_{n=0}^a \sum_{m=0}^b \frac{1}{a!b!} \frac{\partial^{n+m} (x^a p^b)}{\partial x^n \partial p^m} \bigg|_{\substack{x = \langle \hat{x} \rangle \\ p = \langle \hat{p} \rangle}} \Delta \left(x^n p^m \right)$$

In a semiclassical state assume

$$\Delta \left(x^a p^b \right) \propto \hbar^{\frac{a+b}{2}}$$

Are there actual states like that?
$$A = \begin{cases} \frac{a!b!}{2^{a+b}(\frac{a}{2})!(\frac{b}{2})!} & \text{for even } a \text{ and } b \\ 0, & \text{otherwise} \end{cases}$$
, for even a and b

Truncation of dynamics
$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}t} \langle \hat{x} \rangle = \left\{ \langle \hat{x} \rangle, \langle \hat{H} \rangle \right\}_Q \\ \text{So, quantum time evolution equations look something like this} \end{cases} \begin{cases} \frac{\mathrm{d}}{\mathrm{d}t} \langle \hat{p} \rangle = \left\{ \langle \hat{p} \rangle, \langle \hat{H} \rangle \right\}_Q \\ \frac{\mathrm{d}}{\mathrm{d}t} \Delta \left(x^2 \right) = \left\{ \Delta \left(x^2 \right), \langle \hat{H} \rangle \right\}_Q \end{cases}$$

Now we truncate the system by dropping all terms of order above some N, where $\operatorname{Order}(fg\hbar^n) := \operatorname{Order}(f) + \operatorname{Order}(g) + 2n$

Truncation of dynamics

So, quantum time evolution equations look something like this

$$\frac{\mathrm{d}}{\mathrm{d}t} \langle \hat{x} \rangle = \left\{ \langle \hat{x} \rangle, \langle \hat{H} \rangle \right\}_{Q}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \langle \hat{p} \rangle = \left\{ \langle \hat{p} \rangle, \langle \hat{H} \rangle \right\}_{Q}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \Delta (x^{2}) = \left\{ \Delta (x^{2}), \langle \hat{H} \rangle \right\}_{Q}$$

Now we truncate the system by dropping all terms of order above some N, where $\operatorname{Order}(fg\hbar^n) := \operatorname{Order}(f) + \operatorname{Order}(g) + 2n$

Key result: Order of $\{f, g\}_Q$ is at least as large as the order of f and the order of g. As a result:

- Truncated dynamical system is always finite
- Bracket {f, g}₀ can be evaluated before <u>or</u> after truncation

Can use truncated e.g. truncate above order 3 Hamiltonian!
$$\langle \hat{H} \rangle = H_{\rm class} + H^{(2)} + H^{(3)} + H^{(4)}$$

(Main results go through for any finitely-generated algebra. [arXiv:1410.0704])

Example:
$$\hat{H}=\sqrt{\hat{p}_{lpha}^2+\hat{lpha}^2}$$
 (M. Bojowald, A.T. [arXiv:0911.4950])

- Originally motivated by a cosmological model
- Here $\hat{\alpha}$ and \hat{p}_{α} are a canonical pair subject to $[\hat{\alpha},\hat{p}_{\alpha}]=i\hbar$
- Denote (2x) energy of harmonic oscillator $\hat{E}:=\hat{p}_{\alpha}^2+\hat{\alpha}^2$

Example:
$$\hat{H}=\sqrt{\hat{p}_{lpha}^2+\hat{lpha}^2}$$
 (M. Bojowald, A.T. [arXiv:0911.4950])

- Originally motivated by a cosmological model
- Here $\hat{\alpha}$ and \hat{p}_{α} are a canonical pair subject to $[\hat{\alpha},\hat{p}_{\alpha}]=i\hbar$
- Denote (2x) energy of harmonic oscillator $\hat{E}:=\hat{p}_{\alpha}^2+\hat{\alpha}^2$

Solve using two methods:

I. Standard QM: use eigenstates of harmonic oscillator with square-root eigenvalues $\hat{H}|\phi_n\rangle=\sqrt{\hat{E}}|\phi_n\rangle=\sqrt{\lambda_n}|\phi_n\rangle$

Example:
$$\hat{H}=\sqrt{\hat{p}_{lpha}^2+\hat{lpha}^2}$$
 (M. Bojowald, A.T. [arXiv:0911.4950])

- Originally motivated by a cosmological model
- Here $\hat{\alpha}$ and \hat{p}_{α} are a canonical pair subject to $[\hat{\alpha},\hat{p}_{\alpha}]=i\hbar$
- Denote (2x) energy of harmonic oscillator $\hat{E}:=\hat{p}_{\alpha}^2+\hat{\alpha}^2$

Solve using two methods:

I. Standard QM: use eigenstates of harmonic oscillator with square-root eigenvalues $\hat{H}|\phi_n\rangle=\sqrt{\hat{E}}|\phi_n\rangle=\sqrt{\lambda_n}|\phi_n\rangle$

II. Semiclassical truncation:

- Truncate at order 2, retain $\langle \hat{\alpha} \rangle$, $\langle \hat{p}_{\alpha} \rangle$, spreads, and covariance
- Expand $\langle \hat{H} \rangle = \left\langle \sqrt{\hat{E}} \right\rangle = \left\langle \sqrt{\langle \hat{E} \rangle + \widehat{\Delta E}} \right\rangle \; \; \text{in} \; \; \left\langle \widehat{\Delta E}^n \right\rangle \; \text{, truncate}$
- Use truncated $\langle \hat{H}
 angle$ to compute dynamical equations via {, } $_{_{
 m O}}$

Example:
$$\hat{H}=\sqrt{\hat{p}_{lpha}^2+\hat{lpha}^2}$$
 (M. Bojowald, A.T. [arXiv:0911.4950])

Evolve an initially Gaussian wavefunction

$$|\psi(\beta_{+}=0)\rangle = \sum_{n=0}^{\infty} \exp\left(-\frac{|z|^{2}}{2}\right) \frac{z^{n}}{\sqrt{n!}} |\phi_{n}\rangle$$

Example: $\hat{H}=\sqrt{\hat{p}_{\alpha}^2+\hat{\alpha}^2}$ (M. Bojowald, A.T. [arXiv:0911.4950])

Evolve initially Gaussian state

Left: Classical (dotted), wavefunction (solid) and effective (dashed) phase space trajectories, evolved for $0 \le \beta_+ \le 5\alpha_0$

Below: wavefunction (solid) and effective (dashed) evolution of second order moments

The Problem of Time

- In Hamiltonian formulation of GR, energy is restricted to vanish (c.f. Sean's talk)
 ← time-reparameterization invariance.
- In quantum terms there is a constraint

$$\hat{C}_H|\psi\rangle = 0$$

• Where did time-evolution go?

<u>Idea:</u> "Time is relations between co-evolving degrees of freedom."

How can this work out in quantum theory?

The Parable of the Parameterized Particle

Schrödinger equation of a quantum particle

$$i\hbar \frac{\partial}{\partial t} \psi(x,t) = \hat{H}\psi(x,t)$$

Can be re-written as a "Hamiltonian constraint"

$$\left(i\hbar\frac{\partial}{\partial t} - \hat{H}\right)\psi(x,t) = 0$$

Solutions are the same, but...

The Parable of the Parameterized Particle

Schrödinger equation of a quantum particle

$$i\hbar\frac{\partial}{\partial t}\psi(x,t)=\hat{H}\psi(x,t) - \text{A state on } L^2(\mathbb{R},\mathrm{d}x)$$
 Can be re-written as a "Hamiltonian constraint"

$$-\hat{p}_t \qquad \qquad (i\hbar \frac{\partial}{\partial t}) - \hat{H}) \psi(x,t) = 0$$
 A state on $L^2(\mathbb{R}^2, \mathrm{d} x \, \mathrm{d} t)$

• Solutions are the same, but... there are important subtleties!

So, going from constraint to time-evolution involves demoting one observable DoF to a parameter.

Can this be done for a more general $|\hat{C}_H|\psi\rangle=0$?

The Parable of the Parameterized Particle

Schrödinger equation of a quantum particle

$$i\hbar\frac{\partial}{\partial t}\psi(x,t)=\hat{H}\psi(x,t) - \text{A state on } L^2(\mathbb{R},\mathrm{d}x)$$
 Can be re-written as a "Hamiltonian constraint"

$$-\hat{p}_t \qquad (i\hbar \frac{\partial}{\partial t}) - \hat{H}) \psi(x,t) = 0$$
 A state on $L^2(\mathbb{R}^2, \mathrm{d} x \, \mathrm{d} t)$

- **Notice** the solution is not normalizable on $L^2(\mathbb{R}^2, dx dt)$ \rightarrow it is a distribution (a "bra").
- But... it can still be used to assign values to $\hat{x}, \hat{p}, \hat{t}, \hat{p}_t$ if paired with a suitable "ket" → defines a "state" on the polynomial algebra generated by $\hat{x}, \hat{p}, \hat{t}, \hat{p}_t$
- $\Gamma_{\mathbb{Q}}$ already contains solutions to the Hamiltonian constraint!

Thank you!