Michael Doebeli University of British Columbia

> KITP March 15, 2011

Adaptive radiation of Cichlid fishes in African rift lakes

Phenotypic diversityin morphology, behaviour, colour...

Diversifity: multiple peaks in phenotype space

Diversifity: multiple peaks in phenotype space

No pattern in phenotype space: no diversity

Diversification = Pattern formation in phenotype space

Diversification in geographic isolation

Diversification in geographic isolation

"[]The theory of selection among variations can explain the slow transformation of a single species in time, but it cannot, in itself, explain the splitting of species into diverse lines." (Levins and Lewontin, 1985)

Adaptive speciation due to ecological interactions in single (well-mixed) habitat:

Adaptive speciation due to ecological interactions in single (well-mixed) habitat:

- I. An empirical example
- 2. Two different theoretical approaches
- 3. Adaptive diversification in high-dimensional phenotype spaces

Long-term evolution experiments with E. Coli

- Environment: two limiting carbon sources (50% glucose, 50% acetate), well-mixed populations
- Replicate experimental lines propagated in serial batch cultures for ~1,000 generations:

Diversification in colony morphology in 10 out of 10 replicate populations:

Diversification in colony morphology in 10 out of 10 replicate populations:

Diauxy: sequential use of two different resources in batch culture (phenotypic plasticity in seasonal environment)

Diauxy: sequential use of two different resources in batch culture (phenotypic plasticity in seasonal environment)

Large (L) and Small (S) colonies exhibit different diauxy behavior:

Difference in global gene expression: Increased TCA cycle activity in Smalls

quantitative trait, e.g. body size

quantitative trait, e.g. body size

quantitative trait, e.g. body size

Theoretical Problems

Ecology: fitness minima are unstable

Population genetics: recombination prevents divergence

quantitative trait, e.g. body size

Theoretical Problems

Ecology: fitness minima are unstable

Population genetics: recombination prevents divergence

quantitative trait, e.g. body size

Theoretical Problems

Ecology: fitness minima are unstable

Population genetics: recombination prevents divergence

Adaptive diversification due to resource competition

individuals with phenotype x

- ullet per capita birth rate: b=1 (constant), asexual reproduction with small mutations
- per capita death rate: $\frac{b}{K(x)} \sum_{y} \alpha(x-y)$

depends on phenotype and on the phenotypes of the other individual in the population (rare phenotypes have lower death rates than common phenotypes)

First, mean phenotype evolves to maximum of resource curve...

Dependence on ecological parameters

 $\sigma_K < \sigma_{lpha}$: the population remains at the maximum of the resource abundance curve

$\sigma_K > \sigma_{\alpha}$: Evolutionary branching

Adaptive Dynamics (Hans Metz)

Logistic dynamics of monomorphic resident x:

$$\frac{dN(x)}{dt} = N(x) \left(1 - \frac{N(x)}{K(x)} \right)$$

At equilibrium: $\hat{N}(x) = K(x)$

Logistic dynamics of monomorphic resident x:

$$\frac{dN(x)}{dt} = N(x)\left(1 - \frac{N(x)}{K(x)}\right)$$

At equilibrium: $\hat{N}(x) = K(x)$

Population dynamics of rare mutant y in resident x at equilibrium K(x):

$$\frac{dN(y)}{dt} = N(y) \left(1 - \frac{\alpha(x-y)K(x)}{K(y)} \right)$$

Logistic dynamics of monomorphic resident x:

$$\frac{dN(x)}{dt} = N(x)\left(1 - \frac{N(x)}{K(x)}\right)$$

At equilibrium: $\hat{N}(x) = K(x)$

Population dynamics of rare mutant y in resident x at equilibrium K(x):

$$\frac{dN(y)}{dt} = N(y) \left(1 - \frac{\alpha(x-y)K(x)}{K(y)} \right)$$

$$\frac{dN(y)}{dt} = N(y) \left(1 - \frac{\alpha(x-y)K(x)}{K(y)} \right)$$

$$\frac{dN(y)}{dt} = N(y) \left(1 - \frac{\alpha(x-y)K(x)}{K(y)} \right)$$

Invasion fitness:

Per capita growth rate of rare mutant y in monomorphic resident x

$$f(x,y) = 1 - \frac{\alpha(x-y)K(x)}{K(y)}$$

$$\frac{dN(y)}{dt} = N(y) \left(1 - \frac{\alpha(x-y)K(x)}{K(y)} \right)$$

Invasion fitness:

Per capita growth rate of rare mutant y in monomorphic resident x

$$f(x,y) = 1 - \frac{\alpha(x-y)K(x)}{K(y)}$$

Selection gradient:

$$D(x) = \left. \frac{\partial f(x, y)}{\partial y} \right|_{y=x}$$

$$\frac{dN(y)}{dt} = N(y) \left(1 - \frac{\alpha(x-y)K(x)}{K(y)} \right)$$

Invasion fitness:

Per capita growth rate of rare mutant y in monomorphic resident x

$$f(x,y) = 1 - \frac{\alpha(x-y)K(x)}{K(y)}$$

Selection gradient:

$$D(x) = \left. \frac{\partial f(x,y)}{\partial y} \right|_{y=x} = \frac{K'(x)}{K(x)}$$

$$\frac{dx}{dt} = \mu D(x) \qquad \text{(μ describes mutational process)}$$

$$\frac{dx}{dt} = \mu D(x) = \left. \frac{\partial f(x,y)}{\partial y} \right|_{y=x} = \frac{K'(x)}{K(x)} \qquad \text{(μ=1 describes mutational process)}$$

$$\left.\frac{dx}{dt} = \mu D(x) = \left.\frac{\partial f(x,y)}{\partial y}\right|_{y=x} = \frac{K'(x)}{K(x)} \quad \text{ (μ=1 describes mutational process)}$$

Attractors for the adaptive dynamics: points in phenotype space with

$$D(x^*) = 0 \Longleftrightarrow K'(x^*) = 0$$

$$\frac{dx}{dt} = \mu D(x) = \left. \frac{\partial f(x,y)}{\partial y} \right|_{y=x} = \frac{K'(x)}{K(x)} \quad \text{ (μ=1 describes mutational process)}$$

Attractors for the adaptive dynamics: points in phenotype space with

$$D(x^*) = 0 \Longleftrightarrow K'(x^*) = 0$$

Convergence stability:

$$\left. \frac{dD(x)}{dx} \right|_{x=x*} = \frac{K''(x^*)}{K(x^*)} < 0$$

$$\frac{dx}{dt} = \mu D(x) = \left. \frac{\partial f(x,y)}{\partial y} \right|_{y=x} = \frac{K'(x)}{K(x)} \quad \text{ (μ=1 describes mutational process)}$$

Attractors for the adaptive dynamics: points in phenotype space with

$$D(x^*) = 0 \Longleftrightarrow K'(x^*) = 0$$

Convergence stability:

$$\left. \frac{dD(x)}{dx} \right|_{x=x*} = \frac{K''(x^*)}{K(x^*)} < 0$$

Evolutionary stability:

$$\left. \frac{\partial^2 f}{\partial y^2}(x^*, y) \right|_{y=x^*}$$

Resource abundance

Strength of competition

Evolutionary stability:

$$\frac{\partial^2 f}{\partial y^2}(x^*, y)\Big|_{y=x^*} = -\frac{\partial^2 \alpha(x^*, y)}{\partial y^2}\Big|_{y=x^*} + \frac{K''(x^*)}{K(x)}$$

$$= \frac{1}{\sigma_\alpha^2} - \frac{1}{\sigma_K^2}$$

Resource abundance

Strength of competition

Evolutionary stability:

$$\frac{\partial^2 f}{\partial y^2}(x^*, y)\Big|_{y=x^*} = -\frac{\partial^2 \alpha(x^*, y)}{\partial y^2}\Big|_{y=x^*} + \underbrace{\frac{K''(x^*)}{K(x)}} - \underbrace{\frac{\partial D(x)}{\partial x}\Big|_{x=x^*}}_{x=x^*}$$

$$= \frac{1}{2} - \frac{1}{2}$$

Resource abundance

Evolutionary stability:

$$\frac{\partial^2 f}{\partial y^2}(x^*, y)\Big|_{y=x^*} = -\frac{\partial^2 \alpha(x^*, y)}{\partial y^2}\Big|_{y=x^*} + \underbrace{\frac{K''(x^*)}{K(x)}} - \frac{dD(x)}{dx}\Big|_{x=x^*} + \underbrace{\frac{K''(x^*)}{K(x)}} - \underbrace{\frac{dD(x)}{dx}}\Big|_{x=x^*} + \underbrace{\frac{K''(x^*)}{K(x)}} - \underbrace{\frac{dD(x)}{dx}}\Big|_{x=x^*} + \underbrace{\frac{K''(x^*)}{K(x)}} - \underbrace{\frac{dD(x)}{dx}}\Big|_{x=x^*} + \underbrace{\frac{K'''(x^*)}{K(x)}} - \underbrace{\frac{dD(x)}{dx}}\Big|_{x=x^*} + \underbrace{\frac{K'''(x^*)}{K(x)}} - \underbrace{\frac{dD(x)}{dx}}\Big|_{x=x^*} + \underbrace{\frac{K'''(x^*)}{K(x)}} - \underbrace{\frac{dD(x)}{dx}}\Big|_{x=x^*} + \underbrace{\frac{dD(x)}{K(x)}} - \underbrace{\frac{dD(x)$$

 $> 0 \iff \sigma_{\alpha} < \sigma_{K}$

Resource abundance

Strength of competition

Evolutionary stability:

$$\frac{\partial^2 f}{\partial y^2}(x^*, y)\Big|_{y=x^*} = -\frac{\partial^2 \alpha(x^*, y)}{\partial y^2}\Big|_{y=x^*} + \frac{K''(x^*)}{K(x)} + \frac{K''(x^*)}{K(x)} + \frac{1}{\sigma_{\alpha}^2} - \frac{1}{\sigma_{K}^2} \qquad \sigma_{\alpha} < 0$$

$$= \frac{1}{\sigma_{\alpha}^2} - \frac{1}{\sigma_{K}^2} \qquad \sigma_{\alpha} < 0$$

$$> 0 \iff \sigma_{\alpha} < \sigma_{K}$$

Evolutionary branching occurs if an attractor of adaptive dynamics represents a fitness minimum

Two generic evolutionary scenarios

Convergence stable and evolutionarily stable strategy

Two generic evolutionary scenarios

Convergence stable and evolutionarily stable strategy

Evolutionary branching point

Diversification in bacterial populations:

Gene expression analysis reveals two types of changes:

- 1. Genes that are differentially expressed between Large and Small
 - growth in anaerobic conditions (low glucose concentration)
- 2. Genes that are differentially expressed between ancestor and both evolved strains
 - growth in aerobic conditions (high glucose concentration)
 - transport efficiency during stationary phase

Gene expression analysis reveals two types of changes:

- 1. Genes that are differentially expressed between Large and Small
 - growth in anaerobic conditions (low glucose concentration)
- 2. Genes that are differentially expressed between ancestor and both evolved strains
 - growth in aerobic conditions (high glucose concentration)
 - transport efficiency during stationary phase

A: ancestral strain

B: midpoint

C: Most recent common ancestor (MRCA)

A: ancestral strain

B: midpoint

C: Most recent common ancestor (MRCA)

Rediversification from different time points A, B, C in the "fossil record":

A: ancestral strain

B: midpoint

C: Most recent common ancestor (MRCA)

Rediversification from different time points A, B, C in the "fossil record":

Likelihood of diversification increases over time

A: ancestral strain

B: midpoint

C: Most recent common ancestor (MRCA)

Rediversification from different time points A, B, C in the "fossil record":

Likelihood of diversification increases over time

Adaptive dynamics assumption: mutations are rare and occur one at a time

PDE models: dynamics of continuous phenotype distributions (all types present at all a times)

 $\phi(x,t)$: Phenotype distribution at time t

Adaptive dynamics assumption: mutations are rare and occur one at a time

PDE models: dynamics of continuous phenotype distributions (all types present at all a times)

 $\phi(x,t)$: Phenotype distribution at time t

$$\frac{\partial \phi}{\partial t} = b\phi(x) \left(1 - \frac{(\alpha * \phi)(x)}{K(x)}\right) \quad \text{where:} \quad (\alpha * \phi)(x) = \int \alpha(x,y)\phi(y)dy$$
 effective density at x

Adaptive dynamics assumption: mutations are rare and occur one at a time

PDE models: dynamics of continuous phenotype distributions (all types present at all a times)

 $\phi(x,t)$: Phenotype distribution at time t

$$\frac{\partial \phi}{\partial t} = b\phi(x) \left(1 - \frac{(\alpha * \phi)(x)}{K(x)}\right) \quad \text{where:} \quad (\alpha * \phi)(x) = \int \alpha(x,y)\phi(y)dy$$
 effective density at x

Equilibrium distribution $\hat{\phi}: \qquad (\alpha * \hat{\phi})(x) = K(x)$

$$\alpha(x,y) = \exp\left[\frac{-(x-y)^2}{2\sigma_{\alpha}^2}\right] \qquad K(x) = \exp\left[\frac{-(x-x_0)^2}{2\sigma_K^2}\right]$$

Gaussian solution $\hat{\phi}$ with variance $\sigma_K^2 - \sigma_\alpha^2$

$$\sigma_K^2 - \sigma_\alpha^2$$

Phase transition, but no pattern formation...

Gaussian case is structurally unstable

$$\alpha(x,y) = \exp\left[-\frac{(x-y)^{2+\epsilon}}{2\sigma_{\alpha}^{2+\epsilon}}\right]$$

$$K(x) = \exp\left[-\frac{(x)^{2+\delta}}{2\sigma_K^{2+\delta}}\right]$$

Gaussian case: $\epsilon=\delta=0$

Gaussian equilibrium

Pattern formation

$$\alpha(x,y) = \exp\left[-\frac{(x-y)^{2+\epsilon}}{2\sigma_{\alpha}^{2+\epsilon}}\right]$$

$$K(x) = \exp\left[-\frac{(x)^{2+\delta}}{2\sigma_K^{2+\delta}}\right]$$

Sexual model

• Asexual model: $\frac{\partial \phi}{\partial t} = b\phi(x) \left(1 - \frac{(\alpha * \phi)(x)}{K(x)}\right) = b\phi(x) - b\phi(x) \frac{(\alpha * \phi)(x)}{K(x)}$ as a sexual birth term death term

Sexual model

• Asexual model:
$$\frac{\partial \phi}{\partial t} = b\phi(x) \left(1 - \frac{(\alpha * \phi)(x)}{K(x)}\right) = b\phi(x) - b\phi(x) \frac{(\alpha * \phi)(x)}{K(x)}$$
 asexual birth term death term

• Sexual model: same death term

Sexual model

• Asexual model:
$$\frac{\partial \phi}{\partial t} = b\phi(x) \left(1 - \frac{(\alpha * \phi)(x)}{K(x)}\right) = b\phi(x) - b\phi(x) \frac{(\alpha * \phi)(x)}{K(x)}$$
 asexual birth term death term

- Sexual model: same death term
- Sexual birth term: $b\beta(x)$

Mating probability between phenotypes x and y is proportional to Gaussian function:

$$A(x,y) = \exp\left[\frac{-(x-y)^2}{2\sigma_A^2}\right]$$
 σ_A : Strength of assortment

Mating between x and y produces a Gaussian offspring distribution mean (x+y)/2

Sexual model with assortative mating:

Pattern formation even with Gaussian competition kernel and carrying capacity (Guassian equilibrium unstable!)

Sexual model with assortative mating:

Non-equilibrium dynamics (Gaussian kernels)

Phenotypic complexity: diversity in high-dimensional phenotype spaces

I-dimensional:
$$\frac{\partial \phi}{\partial t} = b\phi(x) \left(1 - \frac{(\alpha * \phi)(x)}{K(x)}\right)$$

stabilizing selection: carrying capacity K(x) σ_K

frequency dependence: competition kernel $\alpha(x,y)$

maintenance of variation in the phenotype distribution N(x) if

maintenance of variation in the phenotype distribution N(x) if

two phenotypic dimensions (x_1, x_2)

carrying capacity
$$K(x_1,x_2)=\exp\left[-\frac{x_1^2}{2\sigma_{K_{11}}^2}\right]\cdot\exp\left[-\frac{x_2^2}{2\sigma_{K_{22}}^2}\right]$$

 x_1

"separable" case: no interactions between phenotypes

"non-separable" case: interactions between phenotypes

$$K(x_1, x_2) = \exp\left[-\frac{x_1^2}{2\sigma_{K_{11}}^2}\right] \cdot \exp\left[-\frac{x_2^2}{2\sigma_{K_{22}}^2}\right] \cdot \exp\left[-\frac{x_1 x_2}{2\sigma_{K_{12}}}\right]$$

 x_1

separable (no interactions)

non-separable (phenotype interactions)

$$\sigma_{K_{22}} < \hat{\sigma}_{K_{22}}!$$

separable (no interactions)

non-separable (phenotype interactions)

$$\sigma_{K_{22}} < \hat{\sigma}_{K_{22}}!$$

(occurs for any interaction between x_1 and x_2 ...)

 $(\sigma_{K_{11}} = \sigma_{K_{22}} = \sigma_{\alpha_{11}} = \sigma_{\alpha_{11}})$

$$x_2 - y_2$$

separable carrying capacity

separable competition kernel

 $x_1 - y_1$

$$x_2 - y_2$$

$$(\sigma_{K_{11}} = \sigma_{K_{22}} = \sigma_{\alpha_{11}} = \sigma_{\alpha_{11}})$$

 $x_1 - y_1$

separable carrying capacity

separable competition kernel

non-separable carrying capacity (phenotype interactions)

$$x_2 - y_2$$

$$(\sigma_{K_{11}} = \sigma_{K_{22}} = \sigma_{\alpha_{11}} = \sigma_{\alpha_{11}})$$

 $x_1 - y_1$

separable carrying capacity

separable competition kernel

non-separable carrying capacity (phenotype interactions)

$$(\sigma_{K_{11}} = \sigma_{K_{22}} = \sigma_{\alpha_{11}} = \sigma_{\alpha_{11}})$$

 $x_1 - y_1$

separable carrying capacity

separable competition kernel

non-separable carrying capacity (phenotype interactions)

$$\sigma_{\alpha_{22}} < \hat{\sigma}_{K_{22}}$$
:

diversification (along diagonal)!

n – dimensional phenotype $x = (x_1, \dots, x_n)$ carrying capacity: $K(x) = \exp[-xKx^T]$ competition kernel: $\alpha(x,y) = \exp[-(x-y)A(x-y)^T]$ A, K: quadratic forms

Claim:

A, K symmetric, positive definite quadratic forms $\in \mathbb{R}^{n \times n}$ with diagonal elements $a_{ii} = k_{ii} \quad \forall i$

Then there is a coordinate system in which the quadratic forms are given by diagonal matrices \hat{A} , \hat{K} such that $\hat{a}_{i_0} > \hat{k}_{i_0}$ for at least one index i_0

Example:

stabilizing selection dominates in each phenotypic direction i $(\sigma_{\alpha_{ii}} = 1.6 > \sigma_{K_{ii}} = 0.7)$ weak interactions strength between phenotypic components $(|\sigma_{K_{ij}}| \text{ large, random})$

• Adaptive diversification due to frequency-dependent ecological interactions is a theoretically plausible evolutionary process

- Adaptive diversification due to frequency-dependent ecological interactions is a theoretically plausible evolutionary process
- Empirical support from microbial evolution experiments

- Adaptive diversification due to frequency-dependent ecological interactions is a theoretically plausible evolutionary process
- Empirical support from microbial evolution experiments
- Adaptive dynamics and partial differential equation models yield similar results

- Adaptive diversification due to frequency-dependent ecological interactions is a theoretically plausible evolutionary process
- Empirical support from microbial evolution experiments
- Adaptive dynamics and partial differential equation models yield similar results
- Phenotypic complexity in high-dimensional phenotype spaces promotes diversification

- Adaptive diversification due to frequency-dependent ecological interactions is a theoretically plausible evolutionary process
- Empirical support from microbial evolution experiments
- Adaptive dynamics and partial differential equation models yield similar results
- Phenotypic complexity in high-dimensional phenotype spaces promotes diversification
- "Adaptive Diversification", Princeton University Press, 2011

