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Adaptive radiation of Cichlid fishes in African rift lakes 

2



Phenotypic diversityin morphology, behaviour, colour...
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Diversifity: multiple peaks in phenotype space

Trait 1 
(e.g. morphology)

Trait 2 
(e.g. coloration)
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No pattern in phenotype space: no diversity
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Diversification = Pattern formation in phenotype space

Trait 1 
(e.g. body size)

Trait 2 
(e.g. colour)
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Diversification in geographic isolation

Trait space

Trait space

Physical space

Physical space

Different phenotypes favoured 
in isolated habitats
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Diversification in geographic isolation

Trait space

Trait space

Physical space

Physical space

“[ ]The theory of selection among variations can explain the slow transformation 
of a single species in time, but it cannot, in itself, explain the splitting of species 
into diverse lines.” (Levins and Lewontin, 1985)

Different phenotypes favoured 
in isolated habitats
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phenotype

Adaptive speciation due to 
ecological interactions in single (well-mixed) habitat:

frequency
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Pattern formation?

phenotype

Adaptive speciation due to 
ecological interactions in single (well-mixed) habitat:

frequency
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Adaptive Diversification

1. An empirical example

2. Two different theoretical approaches 

3. Adaptive diversification in high-dimensional 
phenotype spaces
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Example: Adaptive diversification in Escherichia coli 
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Long-term evolution experiments with E. Coli

•  Environment: two limiting carbon sources (50% glucose, 50% acetate), well-mixed populations

•  Replicate experimental lines propagated in serial batch cultures for ~1,000 generations:

inoculate

Growth to 
stationary 
phase

…
50/50 mixture

of glucose/acetate 
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Diversification in colony morphology 
in 10 out of 10 replicate populations:
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Diversification in colony morphology 
in 10 out of 10 replicate populations:

L type (forms large colonies)

S type (forms small colonies)
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Diauxy: sequential use of two different resources in batch culture 
(phenotypic plasticity in seasonal environment)

Exponential growth
on acetate

Stationary phase
(resources exhausted)

Time

E.
 c
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lag phase

Exponential growth
on (glucose)
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Diauxy: sequential use of two different resources in batch culture 
(phenotypic plasticity in seasonal environment)

Time

E.
 c

ol
i p

op
ul

at
io

n 
si

ze

Fast growth on glucose
Long switching lag and slow growth on 
acetate

Slow growth on glucose
Short switching lag and fast growth on acetate

Evolutionary diversification 
in growth profiles?  
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Large (L) and Small (S) colonies exhibit different diauxy behavior:

ancestor
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TCA cycle (slow)

Glycolysis

Acetate secretion (fast)

Carbohydrate metabolism
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Difference in global gene expression: 
Increased TCA cycle activity in Smalls

Glycolysis

Phosphoenol

Pyruvate

Formate

Acetyl-CoA

Oxaloacetate

Citrate

Acetylphosphate

Acetate

Cis-asconitate

Isocitrate

α-ketoglutarate

Succinyl-CoA

Succinate

Fumarate

Malate

Glyoxylate

Formate

Glycolysis

Phosphoenol

Acetyl-CoA

Oxaloacetate

Citrate

Acetylphosphate

Acetate

Cis-asconitate

Isocitrate

α-ketoglutarate

Succinyl-CoA

Succinate

Fumarate

Malate

Glyoxylate

Pyruvate

Small vs. ancestor: Large vs. ancestor:

Overexpression

aceB
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Adaptive Diversificiation

quantitative trait, e.g. body size

frequency

fitness minimum
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Adaptive Diversificiation

pattern formation

quantitative trait, e.g. body size

frequency

fitness minimum
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Adaptive Diversificiation

pattern formation

quantitative trait, e.g. body size

frequency

fitness minimum

Ecology: fitness minima are unstable

Population genetics: recombination prevents divergence

random mating

escape

Theoretical Problems
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•  per capita death rate:

    
    depends on phenotype and on the phenotypes of the other individual in the population
    (rare phenotypes have lower death rates than common phenotypes)

•  per capita birth rate:              (constant), asexual reproduction with small mutations

b

K(x)

�

y

α(x− y)

b = 1

 Adaptive diversification due to resource competition

Phenotypic distance x-y0

Strength of competition
Resource abundance

Resource preference xx0

individuals with phenotype x

K(x) α(x, y)
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First, mean phenotype evolves to maximum of resource curve…

Body size

T
im

e

Fitness function

Resource abundance curve
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σK < σα :

Dependence on ecological parameters

the population remains at the maximum of the resource abundance curve

Resource 
abundance K

Resource preference xx0

σK

Phenotypic distance x-y0

Strength of competition α

σα

Body size

T
im

e
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σK > σα :

Fitness profiles
Resource 
curve

disruptive selection

directional selection

Evolutionary branching

(Dieckmann & Doebeli, Nature, 1999)
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Adaptive Dynamics (Hans Metz)
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N̂(x) = K(x)

  

Logistic dynamics of monomorphic resident x:

Adaptive Dynamics (Hans Metz)

At equilibrium: 

dN(x)
dt

= N(x)
�

1− N(x)
K(x)

�
= N(x)− N(x)

K(x)
N
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dN(y)
dt

= N(y)
�

1− α(x− y)K(x)
K(y)

�

N̂(x) = K(x)

  

Logistic dynamics of monomorphic resident x:

Adaptive Dynamics (Hans Metz)

At equilibrium: 

Population dynamics of rare mutant y in resident x at equilibrium K(x):

dN(x)
dt

= N(x)
�

1− N(x)
K(x)

�
= N(x)− N(x)

K(x)
N
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dN(y)
dt

= N(y)
�

1− α(x− y)K(x)
K(y)

�

N̂(x) = K(x)

  

Logistic dynamics of monomorphic resident x:

Adaptive Dynamics (Hans Metz)

At equilibrium: 

Population dynamics of rare mutant y in resident x at equilibrium K(x):

dN(x)
dt

= N(x)
�

1− N(x)
K(x)

�
= N(x)− N(x)

K(x)
N
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dN(y)
dt

= N(y)
�

1− α(x− y)K(x)
K(y)

�

Population dynamics of rare mutant y in resident x at equilibrium K(x):
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dN(y)
dt

= N(y)
�

1− α(x− y)K(x)
K(y)

�

f(x, y) = 1− α(x− y)K(x)
K(y)

Invasion fitness:
Per capita growth rate of rare mutant y in monomorphic resident x

Population dynamics of rare mutant y in resident x at equilibrium K(x):
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D(x) =
∂f(x, y)

∂y

����
y=x

dN(y)
dt

= N(y)
�

1− α(x− y)K(x)
K(y)

�

f(x, y) = 1− α(x− y)K(x)
K(y)

Invasion fitness:
Per capita growth rate of rare mutant y in monomorphic resident x

Selection gradient:

Population dynamics of rare mutant y in resident x at equilibrium K(x):
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D(x) =
∂f(x, y)

∂y

����
y=x

=
K �(x)
K(x)

dN(y)
dt

= N(y)
�

1− α(x− y)K(x)
K(y)

�

f(x, y) = 1− α(x− y)K(x)
K(y)

Invasion fitness:
Per capita growth rate of rare mutant y in monomorphic resident x

Selection gradient:

Population dynamics of rare mutant y in resident x at equilibrium K(x):
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dx

dt
= µD(x)

Adaptive dynamics:

(μ describes mutational process)
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dx

dt
= µD(x) =

∂f(x, y)
∂y

����
y=x

=
K �(x)
K(x)

Adaptive dynamics:

(μ=1 describes mutational process)
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Attractors for the adaptive dynamics: points in phenotype space with

dx

dt
= µD(x) =

∂f(x, y)
∂y

����
y=x

=
K �(x)
K(x)

D(x∗) = 0⇐⇒ K �(x∗) = 0

Adaptive dynamics:

(μ=1 describes mutational process)
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Attractors for the adaptive dynamics: points in phenotype space with

dD(x)
dx

����
x=x∗

=
K ��(x∗)
K(x∗)

< 0

dx

dt
= µD(x) =

∂f(x, y)
∂y

����
y=x

=
K �(x)
K(x)

D(x∗) = 0⇐⇒ K �(x∗) = 0

Convergence stability:

Adaptive dynamics:

(μ=1 describes mutational process)
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Attractors for the adaptive dynamics: points in phenotype space with

dD(x)
dx

����
x=x∗

=
K ��(x∗)
K(x∗)

< 0

∂2f

dy2
(x∗, y)

����
y=x∗

dx

dt
= µD(x) =

∂f(x, y)
∂y

����
y=x

=
K �(x)
K(x)

D(x∗) = 0⇐⇒ K �(x∗) = 0

Convergence stability:

Evolutionary stability:

Adaptive dynamics:

(μ=1 describes mutational process)
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Phenotypic distance x-y0

Strength of competition
Resource abundance 

Resource preference xx0

K(x) = K0 exp
�
− (x− x0)2

2σ2
K

�
α(x, y) = exp

�
− (x− y)2

2σ2
α

�

Gaussian case:
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∂2f

dy2
(x∗, y)

����
y=x∗

= − ∂2α(x∗, y)
∂y2

����
y=x∗

+
K ��(x∗)
K(x)

=
1
σ2

α

− 1
σ2

K

Evolutionary stability:

Phenotypic distance x-y0

Strength of competition
Resource abundance 

Resource preference xx0

K(x) = K0 exp
�
− (x− x0)2

2σ2
K

�
α(x, y) = exp

�
− (x− y)2

2σ2
α

�

Gaussian case:
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∂2f

dy2
(x∗, y)

����
y=x∗

= − ∂2α(x∗, y)
∂y2

����
y=x∗

+
K ��(x∗)
K(x)

=
1
σ2

α

− 1
σ2

K

dD(x)
dx

����
x=x∗

Evolutionary stability:

Phenotypic distance x-y0

Strength of competition
Resource abundance 

Resource preference xx0

K(x) = K0 exp
�
− (x− x0)2

2σ2
K

�
α(x, y) = exp

�
− (x− y)2

2σ2
α

�

Gaussian case:

26



∂2f

dy2
(x∗, y)

����
y=x∗

= − ∂2α(x∗, y)
∂y2

����
y=x∗

+
K ��(x∗)
K(x)

=
1
σ2

α

− 1
σ2

K

> 0⇐⇒ σα < σK

dD(x)
dx

����
x=x∗

Evolutionary stability:

Phenotypic distance x-y0

Strength of competition
Resource abundance 

Resource preference xx0

K(x) = K0 exp
�
− (x− x0)2

2σ2
K

�
α(x, y) = exp

�
− (x− y)2

2σ2
α

�

Gaussian case:
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∂2f

dy2
(x∗, y)

����
y=x∗

= − ∂2α(x∗, y)
∂y2

����
y=x∗

+
K ��(x∗)
K(x)

=
1
σ2

α

− 1
σ2

K

> 0⇐⇒ σα < σK

σα < σK

dD(x)
dx

����
x=x∗

Evolutionary branching occurs if an attractor of 
adaptive dynamics represents a fitness minimum

Evolutionary stability:

Phenotypic distance x-y0

Strength of competition
Resource abundance 

Resource preference xx0

K(x) = K0 exp
�
− (x− x0)2

2σ2
K

�
α(x, y) = exp

�
− (x− y)2

2σ2
α

�

Gaussian case:
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x1 x2 x3 x4x∗ mutant y

invasion fitness f(x, y)

invasion fitness f(x, y)

x1 x2 x3 x4x∗

f(x1, y) f(x2, y) f(x3, y) f(x4, y)

mutant y

f(x∗, y)

Two generic evolutionary scenarios

Convergence stable and evolutionarily stable strategy
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x1 x2 x3 x4x∗ mutant y

invasion fitness f(x, y)

invasion fitness f(x, y)

x1 x2 x3 x4x∗

f(x1, y) f(x2, y) f(x3, y) f(x4, y)

mutant y

f(x∗, y)

x1 x2 x3 x4x∗ mutant y

invasion fitness f(x, y)

invasion fitness f(x, y)

x1 x2 x3 x4x∗

f(x1, y) f(x2, y) f(x3, y) f(x4, y)

mutant y

f(x∗, y)

Two generic evolutionary scenarios

Convergence stable and evolutionarily stable strategy

Evolutionary branching point
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Diversification in bacterial populations:

ancestor
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Gene expression analysis reveals two types of changes:

1. Genes that are differentially expressed between Large and Small 

• growth in anaerobic conditions (low glucose concentration) 

2. 	
 Genes that are differentially expressed between ancestor and both evolved strains 

• growth in aerobic conditions (high glucose concentration)

• transport efficiency during stationary phase
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Gene expression analysis reveals two types of changes:

1. Genes that are differentially expressed between Large and Small 

• growth in anaerobic conditions (low glucose concentration) 

2. 	
 Genes that are differentially expressed between ancestor and both evolved strains 

• growth in aerobic conditions (high glucose concentration)

• transport efficiency during stationary phase
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Evolutionary branching in switching lag:

A: ancestral strain

B: midpoint

C: Most recent common ancestor (MRCA)
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Evolutionary branching in switching lag: Rediversification from different time points 
A, B, C in the “fossil record”:

A: ancestral strain

B: midpoint

C: Most recent common ancestor (MRCA)
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Evolutionary branching in switching lag: Rediversification from different time points 
A, B, C in the “fossil record”:

A: ancestral strain

B: midpoint

C: Most recent common ancestor (MRCA)

Likelihood of diversification 
increases over time
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Evolutionary branching in switching lag: Rediversification from different time points 
A, B, C in the “fossil record”:

A: ancestral strain

B: midpoint

C: Most recent common ancestor (MRCA)

Likelihood of diversification 
increases over time
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φ(x, t)

PDE models: dynamics of continuous phenotype distributions 
(all types present at all a times)

:  Phenotype distribution at time t

Phenotype x

ab
un

da
nc

e

??

φ

Adaptive dynamics assumption: mutations are rare and occur one at a time
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φ(x, t)

∂φ

∂t
= bφ(x)

�
1− (α ∗ φ)(x)

K(x)

�
(α ∗ φ)(x) =

�
α(x, y)φ(y)dy

PDE models: dynamics of continuous phenotype distributions 
(all types present at all a times)

:  Phenotype distribution at time t

where:

effective density at x

Phenotype x

ab
un

da
nc

e

??

φ

Adaptive dynamics assumption: mutations are rare and occur one at a time
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Equilibrium distribution      :

φ(x, t)

∂φ

∂t
= bφ(x)

�
1− (α ∗ φ)(x)

K(x)

�
(α ∗ φ)(x) =

�
α(x, y)φ(y)dy

(α ∗ φ̂)(x) = K(x)φ̂

PDE models: dynamics of continuous phenotype distributions 
(all types present at all a times)

:  Phenotype distribution at time t

where:

effective density at x

Phenotype x

ab
un

da
nc

e

??

φ

Adaptive dynamics assumption: mutations are rare and occur one at a time
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€ 

α(x,y) = exp −(x − y)
2

2σα
2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

€ 

K(x) = exp −(x − x0)
2

2σK
2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

Gaussian case:

Gaussian solution      with variance 

€ 

σK
2 −σα

2

€ 

σK
2 >σα

2

€ 

ˆ φ 

Phenotype x

ab
un

da
nc

e

€ 

σK
2 <σα

2

€ 

ˆ φ 

Phenotype x

ab
un

da
nc

e

x0

Phase transition, but no pattern formation…

φ̂
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α(x, y) = exp
�
− (x− y)2+�

2σ2+�
α

�
K(x) = exp

�
− (x)2+δ

2σ2+δ
K

�

� = δ = 0 � = δ = 2

 

 

Figure 9.1a
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Figure 9.1c
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Figure 9.1c
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Gaussian case: Quartic case:

Gaussian equilibrium Pattern formation

Gaussian case is structurally unstable
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�

δ
 

 

Figure 9.2

 ! K

 !
!

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

pattern formation

α(x, y) = exp
�
− (x− y)2+�

2σ2+�
α

�
K(x) = exp

�
− (x)2+δ

2σ2+δ
K

�
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Sexual model 

asexual birth term death term

• Asexual model:
∂φ

∂t
= bφ(x)

�
1− (α ∗ φ)(x)

K(x)

�
= bφ(x)− bφ(x)

(α ∗ φ)(x)
K(x)
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Sexual model 

asexual birth term death term

• Asexual model:

• Sexual model: same death term

∂φ

∂t
= bφ(x)

�
1− (α ∗ φ)(x)

K(x)

�
= bφ(x)− bφ(x)

(α ∗ φ)(x)
K(x)

35



bβ(x)

Sexual model 

Mating probability between phenotypes x and y is proportional to Gaussian function:

€ 

A(x,y) = exp −(x − y)
2

2σA
2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ : Strength of assortment

€ 

σA

Mating between x and y produces a Gaussian offspring distribution mean (x+y)/2

asexual birth term death term

• Asexual model:

• Sexual model: same death term

• Sexual birth term:

∂φ

∂t
= bφ(x)

�
1− (α ∗ φ)(x)

K(x)

�
= bφ(x)− bφ(x)

(α ∗ φ)(x)
K(x)
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Sexual model with assortative mating:

Pattern formation even with Gaussian competition kernel and carrying capacity
(Guassian equilibrium unstable!)

 

 

Figure 9.4
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Sexual model with assortative mating:

Non-equilibrium dynamics (Gaussian kernels)

 

 

Figure 9.6a
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Figure 9.6b
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Phenotypic complexity:
diversity in high-dimensional phenotype spaces 

∂φ

∂t
= bφ(x)

�
1− (α ∗ φ)(x)

K(x)

�
1-dimensional:

 

 

x

stabilizing selection:

σK σα

 

 

x− y

frequency dependence:
carrying capacity competition kernel α(x, y)K(x)
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maintenance of variation in the phenotype distribution N(x) if 

σα < σK

 

 

N(x)N(x)

x x

Gaussian case
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maintenance of variation in the phenotype distribution N(x) if 

σα < σK

 

 

N(x)N(x)

x x
 

 

generic case
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two phenotypic dimensions (x1, x2)

carrying capacity 

σK11

σK22

(σK11 = σK22)

“separable” case: no interactions between phenotypes 

x1

x2

K(x1, x2) = exp
�
− x2

1

2σ2
K11

�
· exp

�
− x2

2

2σ2
K22

�
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“non-separable” case: interactions between phenotypes 

x1

x2

σ̂K11

σ̂K22

K(x1, x2) = exp
�
− x2

1

2σ2
K11

�
· exp

�
− x2

2

2σ2
K22

�
· exp

�
− x1x2

2σK12

�

(σK12 < 0)
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σK11

σK22

σ̂K11

σ̂K22

separable 
(no interactions) 

non-separable
(phenotype interactions)

σK22 < σ̂K22 !
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σK11

σK22

σ̂K11

σ̂K22

separable 
(no interactions) 

non-separable
(phenotype interactions)

σK22 < σ̂K22 !

(occurs for any interaction between x1 and x2...)

42



σK11

σK22

separable carrying capacity separable competition kernel 

σα22

σα11

“on the brink of diversification”: widths the same in all directions

x1 − y1

x2 − y2

(σK11 = σK22 = σα11 = σα11)
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σK11

σK22

separable carrying capacity separable competition kernel 

“on the brink of diversification”: widths the same in all directions

σ̂K11

σ̂K22

non-separable carrying capacity
(phenotype interactions)

σα22

σα11

x1 − y1

x2 − y2

(σK11 = σK22 = σα11 = σα11)
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σK11

σK22

separable carrying capacity separable competition kernel 

“on the brink of diversification”: widths the same in all directions

σ̂K11

σ̂K22

non-separable carrying capacity
(phenotype interactions)

diversification (along diagonal)!

σα22

σα11

σα22 < σ̂K22 :

x1 − y1

x2 − y2

(σK11 = σK22 = σα11 = σα11)
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Claim:

A, K symmetric, positive definite quadratic forms ∈ Rn×n

with diagonal elements aii = kii ∀i

Then there is a coordinate system in which the quadratic forms are given by
diagonal matrices Â, K̂ such that âi0 > k̂i0 for at least one index i0

A, K: quadratic forms

carrying capacity: K(x) = exp[−xKxT ]

competition kernel: α(x, y) = exp[−(x− y)A(x− y)T ]

n− dimensional phenotype x = (x1, . . . , xn)
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0 5 10 15
dimension m

0

0.2

0.4

0.6

0.8

1
P
Probability P of diversification

0 0.2 0.4 0.6 0.8 1

 range of off-diagonal elements 
0

0.2

0.4

0.6

0.8

1

P

Probability P of diversification

0 0.2 0.4 0.6 0.8 1

strength of frequency dependence aii

0

0.2

0.4

0.6

0.8

1

P

Probability P of diversification

(a) (b) (c)

weak interactions strength between phenotypic components  

stabilizing selection dominates in each phenotypic direction i 

Example:

(σαii = 1.6 > σKii = 0.7)

(|σKij | large, random)
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Summary
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Summary

• Adaptive diversification due to frequency-dependent ecological 
interactions is a theoretically plausible evolutionary process 
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Summary

• Adaptive diversification due to frequency-dependent ecological 
interactions is a theoretically plausible evolutionary process 

• Empirical support from microbial evolution experiments
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Summary

• Adaptive diversification due to frequency-dependent ecological 
interactions is a theoretically plausible evolutionary process 

• Empirical support from microbial evolution experiments
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• “Adaptive Diversification”, Princeton University Press, 2011
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