
Biological Evolution:
• small changes:  observed all the time
• large changes (e.g., creation of species): rarely seen

Theory of biological evolution:
• large changes from accumulation of small changes
• main difficulty: how to hold on to the desired small changes?
• easy if every small changes gives a fitness benefit

Terry Hwa, UCSD On Growth, Antibiotic Resistance, and Evolution KITP Viral11 01/28/10



but reality is complex…

function of a circuit/device requires 
     coordinated activities of multiple components

 many small changes before fitness benefit realized
       (cf development of eyes)
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at least a plateau landscape

 how to get to the edge of the plateau
     given the huge genome space?

 many small changes before fitness benefit realized

function of a circuit/device requires 
     coordinated activities of multiple components

How does evolution overcome the severe entropy problem?
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get inspiration from biology
rapid evolution of antibiotic resistance
• emerging medical crisis: bacteria resistant to multiple antibiotics
• drug resistance emerged over just the last 30 years
• attributed to wide usage of antibiotics in hospitals and on farms

This talk: theory of drug resistance evolution

• growth-dependence of constitutive gene expression
• positive feedback w/o need of gene regulation
• abrupt response to drug levels
• increased MIC for higher resistance enzyme expression
 recipe for rapid evolution of drug resistance
 possible lesson for the evolution of more complex systems

drug growth

resistance 
enzyme

growth rate

[Drug]MIC
[Scott et al, Science 2010]

[Klumpp et al, Cell 2009]

[Deris et al, in prep]

[Hermsen & TH, PRL 2010]
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! p[ ] = g!m! p

"m#V
$
1
#

factors expected to increase with growth rate:
– chromosome copy number  gene dose (g)
– ribosome conc  translational initiation (αp)
– dilution rate (λ)
– cell volume (V)

Growth-rate dependence of constitutive gene expression?
Consider stable proteins

steady state protein conc

αp

βm

λ

αm

αm
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! p[ ] = g!m! p
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factors expected to increase with growth rate:
– chromosome copy number  gene dose (g)
– ribosome conc  translational initiation (αp)
– dilution rate (λ)
– cell volume (V)

Growth-rate dependence of constitutive gene expression?
Consider stable proteins

steady state protein conc

• growth-rate dependence of gene expression may be complex
• growth-rate dependence of genetic circuits even more complex

αp

βm

λ

αm

αm

[Klumpp et al, Cell 2009]
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gene dose from mass-dependent
DNA replication control

[Cooper & Helmstetter, JMB 1968]

[Bernstein et al. 2002]

mRNA stability from microarray

[Bremer & Dennis, 1996]

[Liang et al, 2000]

Translational burstiness

[Liang et al, 1999]

RNAp abundance from tsx studies

[Klumpp & TH, 2008]
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 growth rate dependence of mRNA “levels”

 growth rate dependence of protein “levels”

[stronger dependences for genes expressed from plasmids]
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theory of bacterial growth

• can be derived quantitatively from theory of bacterial growth
• based on empirical growth laws + model of proteome partition
• some applications:
– effect of (sub-lethal) antibiotics on gene expression
– fitness cost of unnecessary protein expression
– catabolite repression, metabolic coordination, …

Growth-rate dependence of constitutive gene expression

• 3 linear equations (Ohm’s laws)
• a few basic constants

Klumpp, Zhang, TH (Cell, 2009)

Scott et al (Science, 2010)
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• dependence on the medium through growth rate only!
• cell mass (∝ cell size) increases exponentially with growth rate
• similar dependences seen in other bacteria
 understood from mass-dependent DNA replication control
            [Cooper & Hemstetter, 1968; Donachie, 1968]

1st growth law 
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Aerobacter aerogenes (XXXV – Fraenkel & Neidhardt, 1961)
Escherichia coli (B/r – Bremer & Dennis, 1996)
Escherichia coli (15τ-bar – Forchhammer & Lindahl, 1970)
Escherichia coli (B – Bennett & Maaløe, 1974)
Escherichia coli (K12 – this study)
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Simple two-component model of bacterial growth
Focus on the ribosomes as the growth-limiting resource

 absolute max growth rate (χR =1) set by γ (10/hr or 5 min/doubling)
       [note: maximal doubling rate of E. coli = 20min/doubling]
 can change growth rate by changing χR (capitalism) or γ (socialism) 

PRb

 χR 

1- χR 

χR(λ) = MRb/Mtot   growth control strategy revealed by r vs λ plots  

[Maaloe et al]

! "MRb = #R " $ "MRb

• let χR be the fraction of Rb synthesizing Rb

!!!! " = #R $ %

• ribosomes efficiently used in protein synthesis
• synthesized proteins predominantly stable

! :     specific growth rate
" :     Rb elongation rate 
!!!!!!!!!!(~20 aa/s or 10 Rb/hr)

!  !!! r " MRb

Mtot

= # / $!!!
" #Mtot

rate protein mass accum. = rate Rb elongation

!!!!
" #MRb
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Aerobacter aerogenes (XXXV – Fraenkel & Neidhardt, 1961)
Escherichia coli (B/r – Bremer & Dennis, 1996)
Escherichia coli (15τ-bar – Forchhammer & Lindahl, 1970)
Escherichia coli (B – Bennett & Maaløe, 1974)
Escherichia coli (K12 – this study)
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sp growth rate λ (1/h) 

RNA
Protein

2nd growth law: RNA/protein = a• λ + b

but 1/slope ≈ 10 Rb/hr ≈ 20 aa/sec 

vertical offset: non-translating ribosomes
(~15% ribosomes in 30S/50S forms)

= γ 
?

• ribosomes efficiently used in protein synthesis
• synthesized proteins predominantly stable

!  !!! r " MRb

Mtot

= # / $!!!
" #Mtot

rate protein mass accum. = rate Rb elongation

!!!!
" #MRb

! :     specific growth rate
" :     Rb elongation rate 
!!!!!!!!!!(~20 aa/s or 10 Rb/hr)

χR(λ) = MRb/Mtot   growth control strategy revealed by r vs λ plots  
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Growth rate λ (in 1/hour)
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= γ 
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but 1/slope ≈ 10 Rb/hr ≈ 20 aa/sec 

  MRb / Mtot ≡ r  = λ / γ  + r0

[Ruusala et al, ’84]
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modulate translation rate γ for fixed nutrients

• similar effects from tsl mutants and sublethal dose of Cm 
• linear relation obtained:        r = rmax - λ / ν  
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modulate translation rate γ for fixed nutrients

• similar effects from tsl mutants and sublethal dose of Cm
• linear relation obtained:        r = rmax - λ / ν
• seen for all media studied
• ν ~ “nutrient quality”
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modulate translation rate γ for fixed nutrientsSignificance of the 3rd law?

• similar effects from tsl mutants and sublethal dose of Cm 
• linear relation obtained:        r = rmax - λ / ν  
• seen for all media studied
• ν ~ “nutrient quality”
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glucose, NH4, Rif  
glycerol, NH4, Rif

• also seen for other tsl inhibiting drugs (Tc, neo, FA, … ), 
      and variable induction of tsl initiators IF2/IF3 
      but not tsx inhibiting drug (Rif) 

r = rmax - λ / ν  3rd growth law

rmax ~ 25%: importance of other proteins
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 from ppGpp-mediated rRNA control)
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• maintenance of a fixed core (Q)
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Three-component model of the proteome
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Mass fraction:!!!!R + !Q + !P = 1!!!
!!!  "R

max +"Q = 1,
!!!!P + !R = !R
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!!! !"P = # /$ !   for tsl limitation

 constitutive expression ∝ φP 
 linear increase with GR 
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Three-component model of the proteome
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2nd growth law:   
!!!!!!! = " # $R %$0( )

 ! = " #$P !!!

constraint: !!!!P + !R = !R
max !!!

Overall picture:

3rd growth law:  !R = !R
max " # /$

R

P

Q
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! protein synthesis:   
!!!!!"(# ,$) = # % &R '&0( )

! nutrient influx:   
        "(# ,$) = $ %&P

constraint: !!!!P + !R = !R
max !!!

Theory of growth-dependent gene expression

Electrical analogy: resistors in series

ν γ

!V = "P !V = "R #"0

i = !

!V = "R
max #"0

! !!"(# ,$) = # %1 + $%1( )%1
& 'R

max %'0( )  =! !R
max "!0( ) # $ #

%
$ + %

 

Kirchoff’s law

Ohm’s law
R/P partition according
to ν,γ (state variables!)

R

P

Q

Ohm’s law

conductances

[Scott et al, Science 2010]

[J. Monod, ’42]

Michaelis formula for cell growth!

!max " 3.5 dbl/hr
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R
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synthesis
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acid pool

nutrient
influx

! "#P ! "#R

ppGpp
Mechanism of R/P coordination:

! protein synthesis:   
!!!!!"(# ,$) = # % &R '&0( )

! nutrient influx:   
        "(# ,$) = $ %&P

constraint: !!!!P + !R = !R
max !!!

Theory of growth-dependent gene expression

Electrical analogy: resistors in series

ν γ

!V = "P !V = "R #"0

i = !

!V = "R
max #"0

! !!"(# ,$) = # %1 + $%1( )%1
& 'R

max %'0( )  =! !R
max "!0( ) # $ #

%
$ + %

 

R/P partition according
to ν,γ (state variables!)

R

P

Q

[J. Monod, ’42]

Michaelis formula for cell growth!

!max " 3.5 dbl/hr
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R
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! "#P ! "#R

ppGpp
Mechanism of R/P coordination:

! protein synthesis:   
!!!!!"(# ,$) = # % &R '&0( )

! nutrient influx:   
        "(# ,$) = $ %&P

constraint: !!!!P + !R = !R
max !!!

Test: cost of protein overexpression

Electrical analogy: resistors in series

ν γ

!V = "P !V = "R #"0

i = !

!V = "R
max #"0

! !!"(# ,$) = # %1 + $%1( )%1
& 'R

max %'0( )  =! !R
max "!0( ) # $ #

%
$ + %

 

R/P partition according
to ν,γ (state variables!)

!max " 3.5 dbl/hr

R

P

Q

OE

!("OE ;# ,$) = !(0;# ,$) % 1&"OE / ("R
max &"0 ) '( )*

!  protein overexpression: "R
max !"R

max #"OE !
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Test: cost of protein overexpression
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Test: cost of protein overexpression

φOE (in % total protein)
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Cm

RbGrowth

! (C) = ! 0
1+ C / KD

[Harvey/Koch, 1980]

!"1 = !0
"1 # 1+!C /C50( )

C50 ! KD " #max / #0( )
KD $ 2µM
%!!C50 $ 7µM

!(C,") =! #R
max $#0( ) % & (C) "

& (C) + "
 

Application: Effect of antibiotics on cell growth
• consider a translation-inhibiting antibiotics (e.g., chloramphenicol)
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[CAT] = [CAT]0 ! " / "0

Application: Effect of antibiotics on cell growth

Cm

Rb

constitutive
CAT expression

• consider a translation-inhibiting antibiotics (e.g., chloramphenicol)

Growth rate λ (in 1/h)

   
   

   
  P

te
t:L

ac
Z 

/ t
ot

al
 p

ro
te

in
 

0.5 1 1.5 2

0.02

0.04

0.06

0.08

0.10

0
0

Cm

translational limitation

! (C) = ! 0
1+ C / KD

[Harvey/Koch, 1980]

 positive feedback without need for specific regulation!

• expression of Cm resistance (CAT)  

CAT level w/o drug
!(C,") =! #R

max $#0( ) % & (C) "
& (C) + "

 !"1 = !0
"1 # 1+!C /C50( )

Growth

Cext[Ellis/Shaw, 1995]

! " Cext # C( ) = [CAT] " kCAT "C
Km + C
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Cm

Rb

constitutive
CAT expression

Growth

 positive feedback without need for specific regulation!
 generically expect abrupt transition and bimodality
 one dimensionless parameter (resistance efficacy)

! (C) = ! 0
1+ C / KD

Cext

[Harvey/Koch, 1980]

[Ellis/Shaw, 1995]

! " Cext # C( ) = [CAT] " kCAT "C
Km + C

Application: Effect of antibiotics on cell growth

[CAT] = [CAT]0 ! " / "0

!(C,") =! #R
max $#0( ) % & (C) "

& (C) + "
 

CAT level w/o drug
!"1 = !0

"1 # 1+!C /C50( )

• consider a translation-inhibiting antibiotics (e.g., chloramphenicol)

• expression of Cm resistance (CAT)  

kcat•[CAT]0/κ •Km 

ex
te

rn
al

 C
m

 [µ
M

]

no growth

growth

coexistence
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Application: Effect of antibiotics on cell growth
• consider a translation-inhibiting antibiotics (e.g., chloramphenicol)

• expression of Cm resistance (CAT)  

kcat•[CAT]0/κ •Km 

ex
te

rn
al
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m

 [µ
M

]

no growth

growth

coexistence

external Cm (uM)
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th
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 λ
 (i
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h) [CAT]0 ! kCAT
" !Km

# 500
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Occurrence of growth bimodality in the transition region
Observe cell growth in microfluidic chamber at 0.9mM Cm

external Cm (uM)

G
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 λ
 (i
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h) [CAT]0 ! kCAT
" !Km

# 500
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Occurrence of growth bimodality in the transition region

t = 0 t = 6 hrt = 4 hrt = 2 hr

30% of seeded cells grew in microfluidic chamber at 0.9mM Cm

Switch back to 0.1mM Cm

external Cm (uM)

G
ro
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th
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te

 λ
 (i

n 
1/

h) [CAT]0 ! kCAT
" !Km

# 500
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Occurrence of growth bimodality in the transition region

t = 0 t = 6 hrt = 4 hrt = 2 hr

30% of seeded cells grew in microfluidic chamber at 0.9mM Cm

t’ = 0 hr t’ = 8 hr t’ = 9 hr t’ = 10 hr t’ = 11 hr

t’ = 12 hr t’ = 13 hr t’ = 14 hr t’ = 15 hr t’ = 16 hr

non-growers resumed growth 10hr after downshift to 0.1mM Cm

persisters!
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Plate assays to determine upper/lower transitions
Upper transition: Cm sensitivity assay

Lower transition:
1. Batch culture growth in medium with Cm+Amp
2. Plate on LB plates with no drugs
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Predicted phase diagram
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Probe by varying basal CAT expression
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kcat•[CAT]0/κ •Km 

no growth

growth

coexistence

Predicted phase diagram
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Another perspective: fixed ext Cm level
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 λ

 (1
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)

kcat•[CAT]0/κ •Km  
genetic

parameters
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• plateau-like fitness landscape

• Cm-dependent cliff position   
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at least a plateau landscape

 how to get to the edge of the plateau
     given the huge genome space?

 many small changes before fitness benefit realized

function of a circuit/device requires 
     coordinated activities of multiple components

antibiotics: distance to plateau depends on environment
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Adaptation easy if plateau close by
dr

ug
 c
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resistance level wild type
drug level in environment
1 mutation

2 mutations

5 mutations

3 mutations

4 mutations

38



Adaptation hard if plateau far away
dr

ug
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drug level in environment

1 mutation

2 mutations

5 mutations

3 mutations

4 mutations
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Spatial heterogeneities provide “staircase”
dr

ug
 c

on
ce

nt
ra

tio
n

resistance level wild type
drug in sub-compartment
1 mutation

2 mutations

5 mutations

different sub-compartments
1 2 3 4

3 mutations

4 mutations
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The “staircase model”



Landscape:

diagonal (cliff)

same
environment:
competition

different
environments:
no competition

Processes and rates:

Mutation

Migration

Death

Growth

   (“logistic”)











 

! ij ("ij ) = #ij $ 1% "ij / K( )
! ij ("ij )
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t=0 t=100 t=200 t=300 t=400

t=500

The full model as a concatenation of 2x2 models
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2x2 case • how long to go from (1,1) to (2,2)?
• by the upper or lower pathway?

Analytic soln: path  dominates 

Quantitative descrip. of the evolution-migration process?

 

mean 1st arival time: ! "
1

# $ (% + #)
f µ f K / (% + #)( )!!!for  µ f ,µb ! # < %

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!with   f (x) =
x&1 for  x !1  (mutation-limited) 
x&1/2 for  x " 1  (migration-limited)

'
(
)

*)

[Hermsen & TH, PRL, 2010]
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Dependence on the fitness landscape (λij)

01

11• landscape used so far:

• cost of adaptation (c):

01

11-c

!  cost of adaptation not important unless c > " /#
!  abrupt drop in fitness ($0 < " + # ) crucial

• fitness of lower plateau (λ0)

λ01

11

death rate: !
growth rate: "ij # (1$ ni / K )

 plateau landscape eliminates competitors
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The full model as a concatenation of 2x2 models

Quantitative descrip. of the evolution-migration process?

conditions for the applicability of 2x2 model:
• λ0 ≪	 1, µfK ≪	 1 (mutation is the bottleneck of innovation)

• ν < δ (coupling limited to “nearest compartment”)
 natural conditions for antibiotic evolution
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Plateau vs Fuji landscape
cliff bilinear: ! = 1" 1" g
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environment	
  (e)
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  (g
)
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 rapid evolution by surfing along fitness cliff
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Summary:
• strong coupling between

physiology and genetic circuits
• describable through simple growth laws

(few parameters!)
• laws  growth theory

         genotype-fitness relation
• abrupt fitness landscape:

survive or perish (cf “survival of fittest”)

Growth rate λ (in 1/h)
0.5 1 1.5 20

0

0.1

0.2

0.3

0.4

φR

k ca
t•[

C
A

T]
0/κ

 •K
m

external Cm

little growth

growth

 built-in recipe for rapid evolution of drug resistance 
     for bacteria exposed to a continuum of drug levels 
     (via mutation, invasion, and colonization of new niches)

 evolution effectively “directed” by the fitness cliff
 expect to be generic for translational inhibiting drugs
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“Now in the further development of science, we want more than just
a formula. First we have an observation, then we have numbers that
we measure, then we have a law which summarizes all the numbers.
But the real glory of science is that we can find a way of thinking such
that the law is evident.”

      from The Feynman Lectures on Physics
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