# How does demography affect adaptation? 

## Sergey Kryazhimskiy

Desai Lab<br>Harvard University

## Adaptation

## Environment + cellular architecture Regulatory networks Proteins

## Adaptation



Fitness landscape: Mutation rates Distribution of fitness effects Epistasis

## Environment + cellular

 architectureRegulatory networks Proteins

## Adaptation



Dynamics of adaptation: Population structure Clonal interference Multiple mutations

Fitness landscape:
Mutation rates
Distribution of fitness effects Epistasis

Environment + cellular architecture

Regulatory networks
Proteins

## Simplest case

- Well-mixed asexual population of size $N$
- Beneficial mutations are rare

Fixation probability of a mutation with selective advantage $s$

$$
\pi(s)=\frac{1-e^{-2 s}}{1-e^{-2 N s}} \approx 2 s
$$

Population fitness $F$ increases as

$$
\frac{d F}{d t}=\mu N r(F), F(0)=1
$$

$r$ is the expected fitness increment of a mutation

## Simplest case

- Well-mixed asexual population of size $N$
- Beneficial mutations are rare

Fixation probability of a mutation with selective advantage $s$

$$
\pi(s)=\frac{1-e^{-2 s}}{1-e^{-2 N s}} \approx 2 s
$$

Population fitness $F$ increases as

$$
\frac{d F}{d t}=\mu N r(F), F(0)=1
$$

$r$ is the expected fitness increment of a mutation

## Complication: clonal interference




$$
\frac{d F}{d t}=\alpha \mu N \int_{0}^{\infty} s \pi(s) e^{-\lambda(s, \alpha, \mu, N)-\alpha s} d s
$$

## Complication: clonal interference




$$
\frac{d F}{d t}=\alpha \mu N \int_{0}^{\infty} s \pi(s) e^{-\lambda(s, \alpha, \mu, N)-\alpha s} d s
$$

## Complication: piggybacking



$$
\frac{d F}{d t}=s^{2} \frac{2 \log N s-\log s / \mu}{\log ^{2} s / \mu}
$$



## Complication: piggybacking



$$
\frac{d F}{d t}=s^{2} \frac{2 \log N s-\log s / \mu}{\log ^{2} s / \mu}
$$



## Complication: population subdivision



## Shifting balance theory (S.Wright)



Figure 2-Diagrammatic representation of the field of gene combinations in two dimensions instead of many thousands. Dotted lines represent contours with respect to adaptiveness.
"With $10^{1000}$ possibilities it may be taken as certain that there will be an enormous number of widely separated harmonious combinations. < ...> In a rugged field of this character, selection will easily carry the species to the nearest peak, but there may be innumerable other peaks which are higher but which are separated by "valleys". The problem of evolution as I see it is that of a mechanism by which the species may continually find its way from lower to higher peaks in such a field."

Sewall Wright (1932)

## Shifting balance theory (S.Wright)



Figure 2-Diagrammatic representation of the field of gene combinations in two dimensions instead of many thousands. Dotted lines represent contours with respect to adaptiveness.
"With $10^{1000}$ possibilities it may be taken as certain that there will be an enormous number of widely separated harmonious combinations. < ...> In a rugged field of this character, selection will easily carry the species to the nearest peak, but there may be innumerable other peaks which are higher but which are separated by "valleys". The problem of evolution as I see it is that of a mechanism by which the species may continually find its way from lower to higher peaks in such a field."

Sewall Wright (1932)

## Shifting balance theory (S.Wright)

Phase I extensive local differentiation with stochastic variability in each locality

Phase II occasional crossing of a saddle leading to a higher selective peak in a subpopulation

Phase III excess proliferation and dispersal from local populations in which peak shift has occurred

## The island model



Deme size $N$

Number of demes $d$

Migration rate $m$

## Experimental design

- Haploid yeast, asexual growth
-YPD
- 384-well plates, well volume 64ul

- Serial transfer every 24h, dilution I:I000

- 550 generations (2 months)

$$
N_{b}=1000
$$

## Mean fitness



|  | $m$ <br> imm/gen |
| :--- | :--- |
| No | 0 |
| Sm | 5 |
| Med | 20 |
| Lar | 80 |
| $N_{b}=1000$ |  |

Well-mixed populations

## Well-mixed populations. Distribution of mean fitnesses



|  | $N_{b}$ |
| :--- | :--- |
| No | $10^{3}$ |
| Full5 | $5 \times 10^{3}$ |
| Full I0 | $10^{4}$ |
| Full20 | $2 \times 10^{4}$ |

## Well-mixed populations



## Well-mixed populations



Fraction of populations that got one beneficial mutation

## Well-mixed populations

### 0.3 No

Fraction of populations that got one beneficial mutation

$$
P_{1}=2 s N \mu T \approx 0.67
$$

## Well-mixed populations




Fraction of populations that got one beneficial mutation

$$
P_{1}=2 s N \mu T \approx 0.67
$$

## Well-mixed populations



Fraction of populations that got one beneficial mutation

$$
P_{1}=2 s N \mu T \approx 0.67
$$



Slope of mean fitness

$$
k=\frac{2 s^{2} T}{\log ^{2} s / \mu} \approx 0.013
$$

## Well-mixed populations



Fraction of populations that got one beneficial mutation

$$
\begin{aligned}
& P_{1}=2 s N \mu T \approx 0.67 \\
& \\
& \qquad \begin{array}{l}
\mu \approx 2 \times 10^{-6} \\
s \approx 0.03
\end{array}
\end{aligned}
$$

## Well-mixed populations



## Well-mixed populations




## Well-mixed populations



## Well-mixed populations



## Thanks

Michael Desai

Joshua Plotkin
Fei Li

Dan Rice

Desai Lab

Core facilities at Princeton University and Harvard University

