MetStröm

FRANKFURT AM MAIN

WKB theory in phase space for simulating

 the weakly nonlinear dynamics of gravity wavesJewgenija Muraschko Mark Fruman Ulrich Achatz (IAU, Goethe Universität-Frankfurt)

Stefan Hickel (TU Munich) Yaron Toledo (Tel Aviv)

Eddy - Mean-Flow Interactions in Fluids KITP, Santa Barbara, CA, March $25^{\text {th }}, 2014$

Using WKB theory in phase space for simulating the

 weakly nonlinear dynamics of internal gravity waves1. Gravity waves in the atmosphere

- interaction with the mean flow
- parameterization problem

2. WKB theory and ray-tracing

- a coupled WKB - mean-flow system
- the caustics problem

3. The "phase-space" WKB - mean-flow model

- Eulerian version (finite-volume model)
- Lagrangian version ("ray-tracer")

4. Examples

- hydrostatic wave packet
- modulationally-unstable (non-hydrostatic) wave packet
- waves reflected by a shear layer

Gravity waves in the atmosphere

pre-1900 Internal gravity waves known at least since Lord Rayleigh

- Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density (1883)
- Waves are dispersive, with upper limit on frequency
- To support waves, density must decrease with z (static stability)

1920s Väisälä (1925) and Brunt (1927) calculated the period of adiabatic oscillations of a fluid parcel in a stable compressible atmosphere

1950s-60s Hines championed the importance of gravity waves in ionosphere:

- Atmospheric gravity waves: A new toy for the wave theorist (1965)
- Noted opposite sense of phase and group velocities
- Effect of varying winds and temperature: refraction, reflection, ducting

Gravity waves in the atmosphere

pre-1900 Internal gravity waves known at least since Lord Rayleigh

- Investigation of the character of the equilibrium of an
incompressible heavy fluid of variable density (1883)
- Waves are dispersive, with upper limit on frequency
- To support waves, density must decrease with z (static stability)

1920s Väisälä (1925) and Brunt (1927) calculated the period of adiabatic oscillations of a fluid parcel in a stable compressible atmosphere

$$
\tau_{N}=2 \pi / \sqrt{\frac{g}{T}\left(\beta+\frac{\mathrm{d} T}{\mathrm{~d} z}\right)} \sim 5-15 \mathrm{~min}
$$

1950s-60s Hines championed the importance of gravity waves in ionosphere:

- Atmospheric gravity waves: A new toy for the wave theorist (1965)
- Noted opposite sense of phase and group velocities
- Effect of varying winds and temperature: refraction, reflection, ducting

Gravity waves in the atmosphere

pre-1900 Internal gravity waves known at least since Lord Rayleigh

- Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density (1883)
- Waves are dispersive, with upper limit on frequency
- To support waves, density must decrease with z (static stability)

1920s Väisälä (1925) and Brunt (1927) calculated the period of adiabatic oscillations of a fluid parcel in a stable compressible atmosphere

1950s-60s Hines championed the importance of gravity waves in ionosphere:

- Atmospheric gravity waves: A new toy for the wave theorist (1965)
- Noted opposite sense of phase and group velocities
- Effect of varying winds and temperature: refraction, reflection, ducting

Gravity waves in the atmosphere

1970s Role of gravity waves in driving circulation in the middle atmosphere:

- Lindzen \& Holton 1972,

Plumb \& McEwan 1978: theory of QBO

- Lindzen 1973: explanation of cold summer mesopause problem

1980s Gravity wave parameterization in weather and climate models (Lindzen 1981, Holton 1982, Palmer 1986 etc.)

- generation (topography, convection, geostrophic adjustment)
- propagation (WKB theory)
- gravity wave drag

QBO

Gravity waves in the atmosphere

1970s Role of gravity waves in driving circulation in the middle atmosphere:

- Lindzen \& Holton 1972,

Plumb \& McEwan 1978: theory of QBO

- Lindzen 1973: explanation of cold summer mesopause problem
1980s Gravity wave parameterization in weather and climate models (Lindzen 1981, Holton 1982, Palmer 1986 etc.)
> generation (topography, convection, geostrophic adjustment)
- propagation (WKB theory)
> gravity wave drag

cold summer pole

Gravity waves in the atmosphere

1970s Role of gravity waves in driving circulation in the middle atmosphere:

1980s Gravity wave parameterization in weather and climate models (Lindzen 1981, Holton 1982, Palmer 1986 etc.)

- generation (topography, convection, geostrophic adjustment)
- propagation (WKB theory)
- gravity wave drag

observations

no GW parameterization

Gravity waves in the atmosphere

1970s Role of gravity waves in driving circulation in the middle atmosphere:

1980s Gravity wave parameterization in weather and climate models (Lindzen 1981, Holton 1982, Palmer 1986 etc.)

- generation (topography, convection, geostrophic adjustment)
- propagation (WKB theory)
- gravity wave drag

Parameterization

- Forcing due to gravity waves of the mean flow - gravity-wave "drag" (GWD) - is parameterized in weather and climate models (Lindzen 1981, Alexander \& Dunkerton 1999, Warner \& McIntyre 2001, Song \& Chun 2008)
- A typical GWD parameterization scheme:
- assumes a given source spectrum of waves
- assumes an instantaneous background state of the atmosphere

Parameterization

- Forcing due to gravity waves of the mean flow - gravity-wave "drag" (GWD) - is parameterized in weather and climate models (Lindzen 1981, Alexander \& Dunkerton 1999, Warner \& McIntyre 2001, Song \& Chun 2008)
- A typical GWD parameterization scheme:
- assumes a given source spectrum of waves
- assumes an instantaneous background state of the atmosphere
- uses linear theory and WKB theory to determine the positions of critical layers and the heights at which waves should overturn

Parameterization

- Forcing due to gravity waves of the mean flow - gravity-wave "drag" (GWD) - is parameterized in weather and climate models (Lindzen 1981, Alexander \& Dunkerton 1999, Warner \& McIntyre 2001, Song \& Chun 2008)
- A typical GWD parameterization scheme:
- assumes a given source spectrum of waves
- assumes an instantaneous background state of the atmosphere
- uses linear theory and WKB theory to determine the positions of critical layers and the heights at which waves should overturn
- neglects transience in the background and horizontal variation of background (single-column assumption)
- neglects self-interaction (self-acceleration) of the wave field

Motivation

- Today's regional models (and even GCM: e.g. Watanabe et al. 2008) can resolve part of the gravity wave spectrum covered by parameterizations (do existing tuned sources and dissipation still apply?)
- Time scales of gravity wave group propagation not short compared to variations in background - such as solar tides (Senf \& Achatz 2011)

Motivation

- Today's regional models (and even GCM: e.g. Watanabe et al. 2008) can resolve part of the gravity wave spectrum covered by parameterizations (do existing tuned sources and dissipation still apply?)
- Time scales of gravity wave group propagation not short compared to variations in background - such as solar tides (Senf \& Achatz 2011)
- Idea: to test how the waves and mean flow obtained by solving the full time-dependent WKB equations coupled to the equations for the mean flow compare with wave-resolving simulations (i.e. LES)
- ... towards an improved GWD parameterization scheme (with less tuning)
- Important consideration, for example, for use in simulations of different climate scenarios

Coupled one-dimensional wave - mean flow model

Waves

- 2D Boussinesq eqns with stratification linearized about mean wind $U(z, t)$:

$$
\begin{aligned}
\frac{\partial u^{\prime}}{\partial t}+U \frac{\partial u^{\prime}}{\partial x}+\frac{\partial U}{\partial z} w^{\prime}+\frac{\partial P^{\prime}}{\partial x} & =0 \\
\frac{\partial w^{\prime}}{\partial t}+U \frac{\partial w^{\prime}}{\partial x}-N B^{\prime}+\frac{\partial P^{\prime}}{\partial z} & =0 \\
\frac{\partial B^{\prime}}{\partial t}+U \frac{\partial B^{\prime}}{\partial x}+N w^{\prime} & =0 \\
\frac{\partial u^{\prime}}{\partial x}+\frac{\partial w^{\prime}}{\partial z} & =0
\end{aligned}
$$

with:
pressure $\quad P=p / \rho$
stratification $\quad N^{2}(z) \equiv\left(g / \theta_{0}\right) \bar{\theta}_{z}$
buoyancy $\quad B^{\prime} \equiv\left(g / N \theta_{0}\right) \theta^{\prime}$

Mean-flow ("GCM")

- Mean flow forced by divergence of momentum flux associated with the waves:

$$
\frac{\partial U}{\partial t}=-\frac{\partial}{\partial z} \overline{u^{\prime} w^{\prime}}
$$

where:

$$
\bar{f} \equiv \frac{1}{L} \int_{0}^{L} f(x, z, t) \mathrm{d} x
$$

- N.B. Horizontal-mean vertical flux of buoyancy vanishes for a monochromatic gravity wave (N^{2} independent of time)

WKB theory in one dimension

- Assume the stratification varies slowly in height and the mean wind varies slowly in height and/or time compared to the wave fields, i.e. that

$$
\frac{1}{U_{0}} \frac{\partial U}{\partial t} \ll \frac{1}{u_{0}^{\prime}} \frac{\partial u^{\prime}}{\partial t}, \quad\left[\frac{1}{U_{0}} \frac{\partial U}{\partial z}, \frac{1}{N_{0}} \frac{\mathrm{~d} N}{\mathrm{~d} z}\right] \ll \frac{1}{u_{0}^{\prime}} \frac{\partial u^{\prime}}{\partial z}
$$

- Introduce "slow" time and height coordinates $\tau \equiv \epsilon t$, and $\zeta \equiv \epsilon z$ (ϵ is the scale-separation parameter)
- Assume the WKB ansatz:

$$
\left(\begin{array}{c}
u^{\prime} \\
w^{\prime} \\
B^{\prime} \\
P^{\prime}
\end{array}\right)=\operatorname{Re}\left(\sum_{j=0}^{\infty} \epsilon^{j}\left(\begin{array}{c}
\hat{u}_{j}(\zeta, \tau) \\
\hat{w}_{j}(\zeta, \tau) \\
\hat{B}_{j}(\zeta, \tau) \\
\hat{P}_{j}(\zeta, \tau)
\end{array}\right) \exp \left\{i\left[k x+\frac{1}{\epsilon} \Theta(\zeta, \tau)\right]\right\}\right)
$$

- Define the vertical wavenumber and frequency

$$
m(\zeta, \tau) \equiv \frac{1}{\epsilon} \frac{\partial \Theta}{\partial z}=\frac{\partial \Theta}{\partial \zeta}, \quad \omega(\zeta, \tau) \equiv-\frac{1}{\epsilon} \frac{\partial \Theta}{\partial t}=-\frac{\partial \Theta}{\partial \tau}
$$

- Horizontal wavenumber k is constant because the coefficients in the linear system have no explicit x-dependence.

WKB theory in one dimension

- Substitute WKB ansatz into the linear equations:
$\Rightarrow \operatorname{At} \mathcal{O}\left(\epsilon^{0}\right)$:

$$
\hat{\omega}^{2}=\frac{N^{2} k^{2}}{k^{2}+m^{2}}, \quad\left[\hat{u}_{0}, \hat{w}_{0}, \hat{B}_{0}, \hat{P}_{0}\right]=a\left[-i \frac{\hat{\omega}}{k}, i \frac{\hat{\omega}}{m}, \frac{N}{m},-i \frac{\hat{\omega}^{2}}{k^{2}}\right]
$$

where $\hat{\omega} \equiv \omega-k U$ is the intrinsic frequency
The dispersion and polarization relations of plane gravity-waves with uniform N and U equal to their respective local values are satisfied at all points
\Rightarrow At $\mathcal{O}\left(\epsilon^{1}\right)$:

$$
\frac{\partial \mathcal{A}}{\partial t}+\frac{\partial}{\partial \zeta}\left(c_{g} \mathcal{A}\right)=0
$$

where c_{g} is the group speed and $\mathcal{A} \equiv E / \hat{\omega}$ is the wave action density
Amplitude of waves evolves so as to conserve total wave action

Ray equations

- From the dispersion relation

$$
\Omega_{ \pm}(m, z, t) \equiv k U \pm \frac{k N}{\sqrt{k^{2}+m^{2}}}
$$

and the definitions of m and ω follow the ray equations

$$
\frac{\mathrm{d}_{g} \zeta}{\mathrm{~d} \tau}=\left(\frac{\partial \Omega_{ \pm}}{\partial m}\right)_{\zeta, \tau} \equiv c_{g}, \quad \frac{\mathrm{~d}_{g} m}{\mathrm{~d} \tau}=-\left(\frac{\partial \Omega_{ \pm}}{\partial \zeta^{2}}\right)_{m, \tau}, \quad \frac{\mathrm{~d}_{g} \omega}{\mathrm{~d} \tau}=\left(\frac{\partial \Omega_{ \pm}}{\partial \tau}\right)_{\zeta, \tau}
$$

where $\frac{\mathrm{d}_{g}}{\mathrm{~d} t} \equiv\left(\frac{\partial}{\partial \tau}\right)_{\zeta}+c_{g}\left(\frac{\partial}{\partial \zeta}\right)_{\tau}$ is the time derivative along a ray.

- The wave action equation in ray form is $\frac{\mathrm{d}_{g} \mathcal{A}}{\mathrm{~d} \tau}=-\mathcal{A} \frac{\partial c_{g}}{\partial \zeta}$
- The ray equations can be solved as an initial value problem for the evolution of the wave field on a discrete set of "ray-points"
- Challenge is to compute the divergence of the group velocity c_{g} using information on the irregular distribution of ray-points

Caustics

- Wave-action equation $\mathrm{d}_{g} \mathcal{A} / \mathrm{d} t=-\mathcal{A} \partial c_{g} / \partial \zeta$ not well-posed in the presence of caustics: where wavenumber m (and hence c_{g}) becomes a multi-valued function of space

Example 1: Reflection

Background:
$U(z)=-\left(5 \mathrm{~ms}^{-1}\right) \operatorname{sech}\left[\frac{\left(z-z_{1}\right)^{2}}{(3 \mathrm{~km})^{2}}\right]$
Waves:

$$
\begin{aligned}
k & =2 \pi /(3 \mathrm{~km}) \\
m_{0} & =-2 \pi /(3 \mathrm{~km}) \\
\omega & =\Omega_{+}
\end{aligned}
$$

(reflection level where $U(z)=\frac{\hat{\omega}_{0}-N}{k}$)

Caustics

- Wave-action equation $\mathrm{d}_{g} \mathcal{A} / \mathrm{d} t=-\mathcal{A} \partial c_{g} / \partial \zeta$ not well-posed in the presence of caustics: where wavenumber m (and hence c_{g}) becomes a multi-valued function of space

Example 2: Overtaking

Background:
$U(z)=\left(2 \mathrm{~ms}^{-1}\right) \cos \left(\frac{2 \pi z}{50 \mathrm{~km}}\right)$
Waves:

$$
\begin{aligned}
k & =2 \pi /(30 \mathrm{~km}) \\
m_{0} & =-2 \pi /(3 \mathrm{~km}) \\
\omega & =\Omega_{+}
\end{aligned}
$$

Caustics

- Wave-action equation $\mathrm{d}_{g} \mathcal{A} / \mathrm{d} t=-\mathcal{A} \partial c_{g} / \partial \zeta$ not well-posed in the presence of caustics: where wavenumber m (and hence c_{g}) becomes a multi-valued function of space

Example 3: Modulational instability

Background:
Time-dep. mean flow induced by Gaussian wave packet
$U_{0}(z)=\left(.4 \mathrm{~ms}^{-1}\right) \exp \left[-\frac{1}{2}\left(\frac{z-z_{0}}{3 \mathrm{~km}}\right)^{2}\right]$
Waves:

$$
\begin{aligned}
k & =2 \pi /(2 \mathrm{~km}) \\
m_{0} & =-2 \pi /(2.9 \mathrm{~km}) \\
\omega & =\Omega_{+}
\end{aligned}
$$

Caustics

- Wave-action equation $\mathrm{d}_{g} \mathcal{A} / \mathrm{d} t=-\mathcal{A} \partial c_{g} / \partial \zeta$ not well-posed in the presence of caustics: where wavenumber m (and hence c_{g}) becomes a multi-valued function of space

Example 4: Critical layer

Background:
$U(z)=\left(8 \mathrm{~ms}^{-1}\right) \operatorname{sech}\left[\frac{\left(z-z_{1}\right)^{2}}{(3 \mathrm{~km})^{2}}\right]$
Waves:

$$
\begin{aligned}
k & =2 \pi /(3 \mathrm{~km}) \\
m_{0} & =-2 \pi /(3 \mathrm{~km}) \\
\omega & =\Omega_{+}
\end{aligned}
$$

"Caustic at infinity"

Phase-space WKB model

- A solution to the caustics problem is to define a wave-action density on a phase space of position ζ and wavenumber m

$$
\mathcal{N}(\zeta, m, \tau)=\int \mathrm{d} \alpha\left[\mathcal{A}_{\alpha}(\zeta, \tau) \delta\left(m_{\alpha}-m\right)\right]
$$

where each value of α corresponds to a particular WKB solution with a different \mathcal{A} and m at each ζ.

- References:
- Dewar 1970, Dubrulle \& Nazarenko 1997
- For internal waves: Bühler \& McIntyre 1999, Hertzog et al. 2000
- Weakly nonlinear coupled version: Muraschko et al. 2014
- Related to methods used in forecasting surface waves in the ocean
- Caustics cannot occur because rays with different wavenumbers will be at different phase-space positions.

Wave action density equation

- Differentiate \mathcal{N} with respect to τ, keeping m and ζ fixed:

$$
\frac{\partial \mathcal{N}}{\partial \tau}=\int \mathrm{d} \alpha\left[\frac{\partial \mathcal{A}_{\alpha}}{\partial \tau} \delta\left(m_{\alpha}-m\right)+\mathcal{A}_{\alpha} \frac{\partial}{\partial m_{\alpha}} \delta\left(m_{\alpha}-m\right) \frac{\partial m_{\alpha}}{\partial t}\right]
$$

- Using the identity

$$
\int f(x) \frac{\partial}{\partial x} \delta\left(x-x_{0}\right) \mathrm{d} x=-\int f(x) \frac{\partial}{\partial x_{0}} \delta\left(x-x_{0}\right) \mathrm{d} x
$$

and the ray equations, this becomes

$$
\begin{aligned}
\frac{\partial \mathcal{N}}{\partial \tau}=\int \mathrm{d} \alpha\left[-\frac{\partial}{\partial \zeta}\left(c_{g \alpha} \mathcal{A}_{\alpha}\right)\right. & \delta\left(m_{\alpha}-m\right) \\
& \left.-\mathcal{A}_{\alpha} \frac{\partial}{\partial m} \delta\left(m_{\alpha}-m\right)\left(\dot{m}_{\alpha}-c_{g \alpha} \frac{\partial m_{\alpha}}{\partial \zeta}\right)\right]
\end{aligned}
$$

where

$$
\dot{m}_{\alpha}=-\left.\frac{\partial \Omega}{\partial \zeta}\right|_{m=m_{\alpha}(\zeta, \tau)} \quad \text { and } \quad c_{g \alpha}=\left.\frac{\partial \Omega}{\partial m}\right|_{m=m_{\alpha}(\zeta, \tau)}
$$

Wave action density equation

- Adding and subtracting $c_{g \alpha} \mathcal{A}_{\alpha}$ times the ζ derivative of the delta function in the first term in the integrand yields

$$
\begin{aligned}
& \frac{\partial \mathcal{N}}{\partial \tau}=\int \mathrm{d} \alpha\left\{-\frac{\partial}{\partial \zeta}\left[c_{g \alpha} \mathcal{A}_{\alpha} \delta\left(m_{\alpha}-m\right)\right]-c_{g \alpha} \mathcal{A}_{\alpha} \frac{\partial}{\partial m} \delta\left(m_{\alpha}-m\right) \frac{\partial m_{\alpha}}{\partial \zeta}\right. \\
&\left.-\mathcal{A}_{\alpha} \frac{\partial}{\partial m} \delta\left(m_{\alpha}-m\right)\left(\dot{m}_{\alpha}-c_{g \alpha} \frac{\partial m_{\alpha}}{\partial \zeta}\right)\right\} \\
&=\int \mathrm{d} \alpha\left\{-\frac{\partial}{\partial \zeta}\left[c_{g \alpha} \mathcal{A}_{\alpha} \delta\left(m_{\alpha}-m\right)\right]-\dot{m}_{\alpha} \mathcal{A}_{\alpha} \frac{\partial}{\partial m} \delta\left(m_{\alpha}-m\right)\right\}
\end{aligned}
$$

- Since \dot{m}_{α} and \mathcal{A}_{α} are functions of ζ and τ (and not m), they may be absorbed into the m partial derivative in the second term in the integrand, and since the integration over α commutes with both the ζ and m partial derivatives, we have

$$
\frac{\partial \mathcal{N}}{\partial \tau}=-\frac{\partial}{\partial \zeta} \int \mathrm{d} \alpha\left[c_{g \alpha} \mathcal{A}_{\alpha} \delta\left(m_{\alpha}-m\right)\right]-\frac{\partial}{\partial m} \int \mathrm{~d} \alpha\left[\dot{m}_{\alpha} \mathcal{A}_{\alpha} \delta\left(m_{\alpha}-m\right)\right]
$$

Wave action density equation

- The final step is to use the identity

$$
\int_{-\infty}^{\infty} f(x) \delta\left(x-x_{0}\right) \mathrm{d} x=\int_{-\infty}^{\infty} f\left(x_{0}\right) \delta\left(x-x_{0}\right) \mathrm{d} x
$$

so that $c_{g \alpha}$ and \dot{m}_{α} may be replaced by $c_{g}(\zeta, m, \tau)$ and $\dot{m}(\zeta, m, \tau)$, both independent of α.

- We thus have, finally,

$$
\frac{\partial \mathcal{N}}{\partial \tau}=-\frac{\partial}{\partial \zeta}\left\{c_{g} \int \mathrm{~d} \alpha\left[\mathcal{A}_{\alpha} \delta\left(m_{\alpha}-m\right)\right]\right\}-\frac{\partial}{\partial m}\left\{\dot{m} \int \mathrm{~d} \alpha\left[\mathcal{A}_{\alpha} \delta\left(m_{\alpha}-m\right)\right]\right\}
$$

or

$$
\frac{\partial \mathcal{N}}{\partial \tau}+\frac{\partial}{\partial \zeta}\left(c_{g} \mathcal{N}\right)+\frac{\partial}{\partial m}(\dot{m} \mathcal{N})=0
$$

A conservation law for wave-action density in phase space!

Momentum flux and energy

- Horizontal mean momentum flux associated with a monochromatic wave packet may be written in terms of wave action (using the polarization and dispersion relations)

$$
\overline{u_{\alpha}^{\prime} w_{\alpha}^{\prime}}=-\frac{N m_{\alpha} k}{\left(k^{2}+m_{\alpha}^{2}\right)^{\frac{3}{2}}}\left|k \mathcal{A}_{\alpha}\right|
$$

- Phase-space model assumes different spectral components do not interact with one another (except through interaction with the mean flow)
- The momentum flux is then an integral over m:

$$
\overline{u^{\prime} w^{\prime}}=-N k \int_{-\infty}^{\infty} \frac{m}{\left(k^{2}+m^{2}\right)^{\frac{3}{2}}}|k \mathcal{N}| \mathrm{d} m
$$

- Wave-energy density $E \equiv \frac{1}{2}\left(\left|u^{\prime}\right|^{2}+\left|w^{\prime}\right|^{2}+\left|B^{\prime}\right|^{2}\right)$ is

$$
E=\int_{-\infty}^{\infty} \hat{\omega} \mathcal{N}(\zeta, m, \tau) \mathrm{d} m=N \int_{-\infty}^{\infty} \frac{1}{\sqrt{k^{2}+m^{2}}}|k \mathcal{N}(\zeta, m, \tau)| \mathrm{d} m
$$

Phase-space WKB model 1: Eulerian model

- Solves the conservation law

$$
\frac{\partial \mathcal{N}}{\partial \tau}+\frac{\partial}{\partial \zeta}\left(c_{g} \mathcal{N}\right)+\frac{\partial}{\partial m}(\dot{m} \mathcal{N})=0
$$

using finite volume scheme MUSCL on 2D position-wavenumber grid

- Wave action density fluxes computed using ray equations for c_{g} and \dot{m}
- The momentum flux is

$$
\overline{u^{\prime} w^{\prime}}{ }_{i}=-\sum_{j} \frac{N_{i} m_{j} k}{\left(k^{2}+m_{j}^{2}\right)^{\frac{3}{2}}}\left|k \mathcal{N}_{i, j}\right| \Delta_{m}
$$

- $\partial U / \partial t$ is computed using a finite difference approximation to the spatial derivative.

Phase-space WKB model 2: Lagrangian model

- The phase-space flow $\left(c_{g}, \dot{m}\right)$ is nondivergent:

$$
\frac{\partial c_{g}}{\partial \zeta}+\frac{\partial \dot{m}}{\partial m}=\frac{\partial^{2} \Omega}{\partial \zeta \partial m}-\frac{\partial^{2} \Omega}{\partial m \partial \zeta}=0
$$

- Flow is therefore area preserving.

Phase-space WKB model 2: Lagrangian model

Time t_{0}

- The phase-space flow $\left(c_{g}, \dot{m}\right)$ is nondivergent:

$$
\frac{\partial c_{g}}{\partial \zeta}+\frac{\partial \dot{m}}{\partial m}=\frac{\partial^{2} \Omega}{\partial \zeta \partial m}-\frac{\partial^{2} \Omega}{\partial m \partial \zeta}=0
$$

- Flow is therefore area preserving.
- "Ray tracer" solves

$$
\frac{D_{r} \mathcal{N}}{D \tau} \equiv \frac{\partial \mathcal{N}}{\partial t}+c_{g} \frac{\partial \mathcal{N}}{\partial \zeta}+\dot{m} \frac{\partial \mathcal{N}}{\partial m}=0
$$

on discrete "ray points" that move through phase space with velocity $\left(c_{g}, \dot{m}\right)$

- The region R of nonzero \mathcal{N} is approximated by rectangles.

Phase-space WKB model 2: Lagrangian model

- The phase-space flow $\left(c_{g}, \dot{m}\right)$ is nondivergent:

$$
\frac{\partial c_{g}}{\partial \zeta}+\frac{\partial \dot{m}}{\partial m}=\frac{\partial^{2} \Omega}{\partial \zeta \partial m}-\frac{\partial^{2} \Omega}{\partial m \partial \zeta}=0
$$

- Flow is therefore area preserving.
- "Ray tracer" solves

$$
\frac{D_{r} \mathcal{N}}{D \tau} \equiv \frac{\partial \mathcal{N}}{\partial t}+c_{g} \frac{\partial \mathcal{N}}{\partial \zeta}+\dot{m} \frac{\partial \mathcal{N}}{\partial m}=0
$$

on discrete "ray points" that move through phase space with velocity $\left(c_{g}, \dot{m}\right)$

- The region R of nonzero \mathcal{N} is approximated by rectangles.
- The height and width of the rectangles change with time.

Time t_{0}

$$
\text { Time } t_{1}
$$

Phase-space WKB model 2: Lagrangian model

- The rectangles attached to ray particles are used to compute the momentum flux.
- Vertical mean momentum forcing in interval $z_{i}<\zeta<z_{i}+\Delta z$ is sum of contributions from all ray particles (index j):

$$
\begin{aligned}
\overline{u^{\prime} w^{\prime}}{ }_{i} & =-\frac{1}{\Delta z} \int_{R \cap R_{i}} \frac{N_{i} k m}{\left(k^{2}+m^{2}\right)^{\frac{3}{2}}}|k \mathcal{N}| \mathrm{d} m \mathrm{~d} \zeta \\
& =-\sum_{j} \frac{1}{\Delta z} \int_{R_{j} \cap R_{i}} \frac{N_{i} k m}{\left(k^{2}+m^{2}\right)^{\frac{3}{2}}}\left|k \mathcal{N}_{j}\right| \mathrm{d} m \mathrm{~d} \zeta \\
& =-\sum_{j}\left(\frac{\Delta z_{i}^{j}}{\Delta z}\right) \int_{m_{j 1}}^{m_{j 2}} \frac{N_{i} k m}{\left(k^{2}+m^{2}\right)^{\frac{3}{2}}}\left|k \mathcal{N}_{j}\right| \mathrm{d} m
\end{aligned}
$$

$$
=\sum_{j}\left(\frac{\Delta z_{i}^{j}}{\Delta z}\right) N_{i} k\left|k \mathcal{N}_{j}\right|\left[\frac{1}{\left(k^{2}+m_{j 2}^{2}\right)^{\frac{1}{2}}}-\frac{1}{\left(k^{2}+m_{j 1}^{2}\right)^{\frac{1}{2}}}\right]
$$

Test case: Quasimonochromatic wave packet

- Deceptively simple test case: Gaussian wave packet

$$
\begin{aligned}
b^{\prime}(x, z, t=0) & =A_{b}(z) \cos \left(k x+m_{0} z\right) \\
u^{\prime}(x, z, t=0) & =A_{b}(z) \frac{m_{0}}{k} \frac{\hat{\omega}_{0}}{N_{0}^{2}} \sin \left(k x+m_{0} z\right) \\
w^{\prime}(x, z, t=0) & =-A_{b}(z) \frac{\hat{\omega}_{0}}{N_{0}^{2}} \sin \left(k x+m_{0} z\right)
\end{aligned}
$$

where $b^{\prime}=N B$ is buoyancy, m_{0} is a constant, and

$$
A_{b}(z)=a_{0} \frac{N_{0}^{2}}{m_{0}} \exp \left[-\frac{\left(z-z_{0}\right)^{2}}{2 \sigma^{2}}\right]
$$

- The waves are statically stable for $\left|a_{0}\right|<1$.
- Initialization of phase-space wave-action density

$$
\mathcal{N}(m, z, t=0)=\left\{\begin{array}{cl}
\frac{A_{b}^{2}(z)}{2 N_{0}^{2} \hat{\omega}_{0}} \frac{1}{\Delta m_{0}}, & \text { for } m_{0}-\frac{1}{2} \Delta m_{0}<m<m_{0}+\frac{1}{2} \Delta m_{0} \\
0, & \text { otherwise }
\end{array}\right.
$$

Example 1: Hydrostatic wave packet

Background:

Uniform stratification

$$
N=N_{0}=0.02 \mathrm{~s}^{-1}
$$

No initial mean flow

Waves:

$$
\begin{aligned}
k & =2 \pi /(3 \mathrm{~km}) \\
m_{0} & =-2 \pi /(30 \mathrm{~km}) \\
\omega & =\Omega_{+} \\
a_{0} & =0.1, \underline{0.5}, 0.8
\end{aligned}
$$

time 000 min

Example 1: Hydrostatic wave packet

- Wave energy and induced mean flow at 200 min. for different amplitudes:

$$
a_{0}=0.8
$$

(20)

- WKB models (FV and RAY) compare well with weakly nonlinear wave-resolving model (WNL) and fully nonlinear model INCA (LES)
- Dotted line is linear solution without feedback on mean flow

Example 2: Refraction by a variable stratification

Background:
sinusoidal perturbation
to mean buoyancy between
50 km and 70 km ;
$N=N_{0}=0.02 \mathrm{~s}^{-1}$ elsewhere
No initial mean flow

Waves:

$$
U\left(t_{0}\right)=0
$$

$$
\begin{aligned}
k & =2 \pi /(3 \mathrm{~km}) \\
m_{0} & =-2 \pi /(30 \mathrm{~km}) \\
\omega & =\Omega_{+} \\
a_{0} & =0.5
\end{aligned}
$$

Example 2: Refraction by a variable stratification

E, WKB finite-volume model

E, WKB ray-tracer

E, weakly nonlinear model

E, fully nonlinear model

Example 3: Modulationally unstable wave packet

Background:
Uniform stratification

$$
N=N_{0}=0.02 \mathrm{~s}^{-1}
$$

Initial U equal to pseudomomentum:

$$
U\left(t_{0}\right)=\frac{k A_{b}^{2}(z)}{N_{0}^{2} \hat{\omega}_{0}}
$$

Waves:

$$
\begin{aligned}
k & =2 \pi /(2 \mathrm{~km}) \\
m_{0} & =-2 \pi /(2.9 \mathrm{~km}) \\
\omega & =\Omega_{+} \\
a_{0} & =0.21
\end{aligned}
$$

time 000 min

Example 3: Modulationally unstable wave packet

- Induced mean flow versus z and t in reference frame moving with $c_{g 0}$ (cf. Sutherland 2006):

$$
\begin{aligned}
& a_{0}=0.21 \\
& \lambda_{z 0}=2.9 \mathrm{~km}
\end{aligned}
$$

WKB Ray-tracer

WKB FV

u°
$\lambda_{z 0}=5 \mathrm{~km}$

- Focusing and deceleration of wave packet captured by WKB models
- Fine spatial structure of mean flow not captured

Example 4: Wave packet reflected by a shear layer

Background:
Uniform stratification
$N=N_{0}=0.02 \mathrm{~s}^{-1}$

Jet centred at 70 km
$U\left(t_{0}\right)=-U_{00} \operatorname{sech}\left[\frac{\left(z-z_{1}\right)^{2}}{\Sigma_{U}^{2}}\right]$

Waves:

$$
\begin{aligned}
k & =2 \pi /(3 \mathrm{~km}) \\
m_{0} & =2 \pi /(3 \mathrm{~km}) \\
\omega & =\Omega_{-} \\
a_{0} & =0.2
\end{aligned}
$$

Example 4: Wave packet reflected by a shear layer

- Wave-energy density versus z and t from WKB and wave-resolving models
- Standing-wave pattern below reflecting level absent in WKB simulations

E, weakly nonlinear model

E, fully nonlinear model

Example 4a: Wave train reflected by a shear layer

- Can find analytic solution to purely linear case of reflection of a steady wave train by a jet without feedback on the mean flow.
- Consider height $z=z_{0}$ far from reflecting level, where $U\left(z_{0}\right)=0$ and let $\mathcal{N}=\mathcal{N}_{0}$ between the positive wavenumbers $m=m_{10}$ and $m=m_{20}$.
- In steady case, ω constant along a ray, so \mathcal{N} must equal \mathcal{N}_{0} everywhere between the two characteristic curves $m_{1}(z)$ and $m_{2}(z)$ defined by

$$
k U(z)-\frac{k N_{0}}{\sqrt{k^{2}+m_{j}^{2}(z)}}=\omega_{j}
$$

- Energy density as a function of z is then

$$
E(z)=2 \mathcal{N}_{0} \begin{cases}\int_{m_{1}(z)}^{m_{2}(z)} \hat{\omega}(m) \mathrm{d} m, & z<z_{1}^{r} \\ \int_{0}^{m_{2}(z)} \hat{\omega}(m) \mathrm{d} m, & z_{1}^{r}<z<z_{2}^{r} \\ 0 & z>z_{2}^{r}\end{cases}
$$

Characteristics

where z_{j}^{r} is turning point (reflecting level) of characteristic $m_{j}(z)$.

Example 4a: Wave train reflected by a shear layer

- The integral may be evaluated exactly:
$\int \hat{\omega}(m) \mathrm{d} m=N \int \frac{1}{\sqrt{1+\frac{m^{2}}{k^{2}}}} \mathrm{~d} m=N k \log \left|\frac{m}{k}+\sqrt{1+\frac{m^{2}}{k^{2}}}\right|+$ constant

- In the limit $m_{10}, m_{20} \rightarrow m_{00}$, result tends towards conventional ray-tracing result obtained from $\omega=$ constant and $c_{g} \mathcal{A}=$ constant along a ray:

$$
\frac{E_{\text {conv }}(z)}{E\left(z_{0}\right)}=\frac{m_{00}}{m_{0}(z)}\left[\frac{k^{2}+m_{0}^{2}(z)}{k^{2}+m_{00}^{2}}\right]
$$

Summary

- Phase-space WKB equivalent to conventional WKB when \mathcal{A}_{α} and m_{α} differentiable and single valued
- Solution does not develop singularities (caustics) when none exist in initial conditions
- Compares well with wave-resolving simulations even in some cases where WKB assumptions violated (reflection, modulational instability)
- Two numerical implementations:
- robust "Eulerian" finite-volume method
- efficient (but home-made) "Lagrangian" ray-tracer

Summary

- Phase-space WKB equivalent to conventional WKB when \mathcal{A}_{α} and m_{α} differentiable and single valued
- Solution does not develop singularities (caustics) when none exist in initial conditions
- Compares well with wave-resolving simulations even in some cases where WKB assumptions violated (reflection, modulational instability)
- Two numerical implementations:
- robust "Eulerian" finite-volume method
- efficient (but home-made) "Lagrangian" ray-tracer
- Ongoing work:
- experiments with more complicated initial wave fields (e.g. superposition of several wave packets)
- implementing phase-space WKB in anelastic model where gravity waves increase in amplitude with height
- parameterization of gravity wave drag due to breaking of waves
- extension to 2 and 3 spatial dimensions, couple to GCM

