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Using WKB theory in phase space for simulating the
weakly nonlinear dynamics of internal gravity waves

1. Gravity waves in the atmosphere

I interaction with the mean flow
I parameterization problem

2. WKB theory and ray-tracing

I a coupled WKB – mean-flow system
I the caustics problem

3. The “phase-space” WKB – mean-flow model

I Eulerian version (finite-volume model)
I Lagrangian version (“ray-tracer”)

4. Examples

I hydrostatic wave packet
I modulationally-unstable (non-hydrostatic) wave packet
I waves reflected by a shear layer



Gravity waves in the atmosphere

pre-1900 Internal gravity waves known at least since Lord Rayleigh

I Investigation of the character of the equilibrium of an
incompressible heavy fluid of variable density (1883)

I Waves are dispersive, with upper limit on frequency
I To support waves, density must decrease with z (static stability)

1920s Väisälä (1925) and Brunt (1927) calculated the period of adiabatic
oscillations of a fluid parcel in a stable compressible atmosphere

τN = 2π

/√
g

T

(
β +

dT

dz

)
∼ 5− 15 min

1950s-60s Hines championed the importance of gravity waves in ionosphere:

I Atmospheric gravity waves: A new toy for the wave theorist (1965)
I Noted opposite sense of phase and group velocities
I Effect of varying winds and temperature:

refraction, reflection, ducting
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Gravity waves in the atmosphere

1970s Role of gravity waves in driving circulation in

the middle atmosphere:

I Lindzen & Holton 1972,
Plumb & McEwan 1978: theory of QBO

I Lindzen 1973: explanation of cold
summer mesopause problem

1980s Gravity wave parameterization in weather and
climate models (Lindzen 1981, Holton 1982,

Palmer 1986 etc.)

I generation (topography, convection,
geostrophic adjustment)

I propagation (WKB theory)
I gravity wave drag QBO
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Parameterization

I Forcing due to gravity waves of the mean flow – gravity-wave “drag”
(GWD) – is parameterized in weather and climate models
(Lindzen 1981, Alexander & Dunkerton 1999, Warner & McIntyre 2001,
Song & Chun 2008)

I A typical GWD parameterization scheme:

I assumes a given source spectrum of waves
I assumes an instantaneous background state of the atmosphere

I uses linear theory and WKB theory to determine the positions
of critical layers and the heights at which waves should
overturn

I neglects transience in the background and horizontal variation
of background (single-column assumption)

I neglects self-interaction (self-acceleration) of the wave field
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Motivation

I Today’s regional models (and even GCM: e.g. Watanabe et al. 2008) can
resolve part of the gravity wave spectrum covered by parameterizations
(do existing tuned sources and dissipation still apply?)

I Time scales of gravity wave group propagation not short compared to
variations in background – such as solar tides (Senf & Achatz 2011)

I Idea: to test how the waves and mean flow obtained by solving the full
time-dependent WKB equations coupled to the equations for the mean
flow compare with wave-resolving simulations (i.e. LES)

I . . . towards an improved GWD parameterization scheme (with less tuning)

I Important consideration, for example, for use in simulations of different
climate scenarios
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Coupled one-dimensional wave – mean flow model
Waves

I 2D Boussinesq eqns with
stratification linearized about
mean wind U(z , t):

∂u′

∂t
+ U

∂u′

∂x
+
∂U

∂z
w ′ +

∂P ′

∂x
= 0

∂w ′

∂t
+ U

∂w ′

∂x
− NB ′ +

∂P ′

∂z
= 0

∂B ′

∂t
+ U

∂B ′

∂x
+ Nw ′ = 0

∂u′

∂x
+
∂w ′

∂z
= 0

with:
pressure P = p/ρ

stratification N2(z) ≡ (g/θ0)θz

buoyancy B ′ ≡ (g/Nθ0)θ′

Mean-flow (“GCM”)

I Mean flow forced by divergence
of momentum flux associated
with the waves:

∂U

∂t
= − ∂

∂z
u′w ′

where:

f ≡ 1

L

L∫
0

f (x , z , t)dx

I N.B. Horizontal-mean vertical
flux of buoyancy vanishes for a
monochromatic gravity wave
(N2 independent of time)



WKB theory in one dimension
I Assume the stratification varies slowly in height and the mean wind varies

slowly in height and/or time compared to the wave fields, i.e. that

1

U0

∂U

∂t
� 1

u′0

∂u′

∂t
,

[
1

U0

∂U

∂z
,

1

N0

dN

dz

]
� 1

u′0

∂u′

∂z

I Introduce “slow” time and height coordinates τ ≡ εt, and ζ ≡ εz
(ε is the scale-separation parameter)

I Assume the WKB ansatz:
u′

w ′

B ′

P ′

 = Re

 ∞∑
j=0

εj


ûj(ζ, τ)
ŵj(ζ, τ)

B̂j(ζ, τ)

P̂j(ζ, τ)

 exp

{
i

[
kx +

1

ε
Θ(ζ, τ)

]}
I Define the vertical wavenumber and frequency

m(ζ, τ) ≡ 1

ε

∂Θ

∂z
=
∂Θ

∂ζ
, ω(ζ, τ) ≡ −1

ε

∂Θ

∂t
= −∂Θ

∂τ

I Horizontal wavenumber k is constant because the coefficients in the
linear system have no explicit x-dependence.



WKB theory in one dimension

I Substitute WKB ansatz into the linear equations:

⇒ At O
(
ε0
)
:

ω̂2 =
N2k2

k2 + m2
, [û0, ŵ0, B̂0, P̂0] = a

[
−i
ω̂

k
, i
ω̂

m
,

N

m
,−i

ω̂2

k2

]
where ω̂ ≡ ω − kU is the intrinsic frequency

The dispersion and polarization relations of plane gravity-waves
with uniform N and U equal to their respective local values

are satisfied at all points

⇒ At O
(
ε1
)
:

∂A
∂t

+
∂

∂ζ
(cgA) = 0

where cg is the group speed and A ≡ E/ω̂ is the wave action density

Amplitude of waves evolves so as to conserve total wave action



Ray equations

I From the dispersion relation

Ω±(m, z , t) ≡ kU ± kN√
k2 + m2

and the definitions of m and ω follow the ray equations

dgζ

dτ
=

(
∂Ω±
∂m

)
ζ,τ

≡ cg ,
dgm

dτ
= −

(
∂Ω±
∂ζ

)
m,τ

,
dgω

dτ
=

(
∂Ω±
∂τ

)
ζ,τ

where
dg

dt
≡
(
∂

∂τ

)
ζ

+ cg

(
∂

∂ζ

)
τ

is the time derivative along a ray.

I The wave action equation in ray form is
dgA
dτ

= −A∂cg
∂ζ

I The ray equations can be solved as an initial value problem for the
evolution of the wave field on a discrete set of “ray-points”

I Challenge is to compute the divergence of the group velocity cg using
information on the irregular distribution of ray-points



Caustics

I Wave-action equation dgA/dt = −A ∂cg/∂ζ not well-posed in the
presence of caustics: where wavenumber m (and hence cg ) becomes a
multi-valued function of space

Example 1: Reflection

Background:

U(z) = −(5 ms−1) sech

[
(z − z1)2

(3 km)2

]
Waves:

k = 2π/(3 km)

m0 = −2π/(3 km)

ω = Ω+

(reflection level where U(z) =
ω̂0 − N

k
)



Caustics
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multi-valued function of space

Example 2: Overtaking

Background:

U(z) = (2 ms−1) cos

(
2πz

50 km

)
Waves:

k = 2π/(30 km)

m0 = −2π/(3 km)
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Caustics

I Wave-action equation dgA/dt = −A ∂cg/∂ζ not well-posed in the
presence of caustics: where wavenumber m (and hence cg ) becomes a
multi-valued function of space

Example 3: Modulational instability

Background:
Time-dep. mean flow induced
by Gaussian wave packet

U0(z) = (.4 ms−1) exp

[
−1

2

(z − z0

3 km

)2
]

Waves:

k = 2π/(2 km)

m0 = −2π/(2.9 km)

ω = Ω+



Caustics

I Wave-action equation dgA/dt = −A ∂cg/∂ζ not well-posed in the
presence of caustics: where wavenumber m (and hence cg ) becomes a
multi-valued function of space

Example 4: Critical layer

Background:

U(z) = (8 ms−1) sech

[
(z − z1)2

(3 km)2

]
Waves:

k = 2π/(3 km)

m0 = −2π/(3 km)

ω = Ω+

“Caustic at infinity”



Phase-space WKB model

I A solution to the caustics problem is to define a wave-action density on a
phase space of position ζ and wavenumber m

N (ζ,m, τ) =

∫
dα [Aα(ζ, τ)δ(mα −m)]

where each value of α corresponds to a particular WKB solution with a
different A and m at each ζ.

I References:

I Dewar 1970, Dubrulle & Nazarenko 1997
I For internal waves: Bühler & McIntyre 1999,

Hertzog et al. 2000
I Weakly nonlinear coupled version: Muraschko et al. 2014
I Related to methods used in forecasting

surface waves in the ocean

I Caustics cannot occur because rays with different wavenumbers will be at
different phase-space positions.



Wave action density equation
I Differentiate N with respect to τ , keeping m and ζ fixed:

∂N
∂τ

=

∫
dα

[
∂Aα
∂τ

δ(mα −m) +Aα
∂

∂mα
δ(mα −m)

∂mα

∂t

]

I Using the identity∫
f (x)

∂

∂x
δ(x − x0)dx = −

∫
f (x)

∂

∂x0
δ(x − x0)dx

and the ray equations, this becomes

∂N
∂τ

=

∫
dα

[
− ∂

∂ζ
(cgαAα)δ(mα −m)

− Aα
∂

∂m
δ(mα −m)

(
ṁα − cgα

∂mα

∂ζ

)]
where

ṁα = −∂Ω

∂ζ

∣∣∣∣
m=mα(ζ,τ)

and cgα =
∂Ω

∂m

∣∣∣∣
m=mα(ζ,τ)



Wave action density equation

I Adding and subtracting cgαAα times the ζ derivative of the delta
function in the first term in the integrand yields

∂N
∂τ

=

∫
dα

{
− ∂

∂ζ
[cgαAαδ(mα −m)]− cgαAα

∂

∂m
δ(mα −m)

∂mα

∂ζ

− Aα
∂

∂m
δ(mα −m)

(
ṁα − cgα

∂mα

∂ζ

)}

=

∫
dα

{
− ∂

∂ζ
[cgαAαδ(mα −m)]− ṁαAα

∂

∂m
δ(mα −m)

}

I Since ṁα and Aα are functions of ζ and τ (and not m), they may be
absorbed into the m partial derivative in the second term in the
integrand, and since the integration over α commutes with both the ζ
and m partial derivatives, we have

∂N
∂τ

= − ∂

∂ζ

∫
dα [cgαAαδ(mα −m)]− ∂

∂m

∫
dα [ṁαAαδ(mα −m)]



Wave action density equation

I The final step is to use the identity∫ ∞
−∞

f (x)δ(x − x0)dx =

∫ ∞
−∞

f (x0)δ(x − x0)dx

so that cgα and ṁα may be replaced by cg (ζ,m, τ) and ṁ(ζ,m, τ), both
independent of α.

I We thus have, finally,

∂N
∂τ

= − ∂

∂ζ

{
cg

∫
dα [Aαδ(mα −m)]

}
− ∂

∂m

{
ṁ

∫
dα [Aαδ(mα −m)]

}
or

∂N
∂τ

+
∂

∂ζ
(cgN ) +

∂

∂m
(ṁN ) = 0

A conservation law for wave-action density in phase space!



Momentum flux and energy

I Horizontal mean momentum flux associated with a monochromatic wave
packet may be written in terms of wave action (using the polarization and
dispersion relations)

u′αw ′α = − Nmαk

(k2 + m2
α)

3
2

|kAα|

I Phase-space model assumes different spectral components do not interact
with one another (except through interaction with the mean flow)

I The momentum flux is then an integral over m:

u′w ′ = −Nk

∫ ∞
−∞

m

(k2 + m2)
3
2

|kN|dm

I Wave-energy density E ≡ 1
2
(|u′|2 + |w ′|2 + |B ′|2) is

E =

∫ ∞
−∞

ω̂N (ζ,m, τ)dm = N

∫ ∞
−∞

1√
k2 + m2

|kN (ζ,m, τ)|dm



Phase-space WKB model 1: Eulerian model

I Solves the conservation law

∂N
∂τ

+
∂

∂ζ
(cgN ) +

∂

∂m
(ṁN ) = 0

using finite volume scheme MUSCL on
2D position-wavenumber grid

I Wave action density fluxes computed
using ray equations for cg and ṁ

I The momentum flux is

u′w ′ i = −
∑
j

Nimjk

(k2 + m2
j )

3
2

|kNi,j |∆m

I ∂U/∂t is computed using a finite
difference approximation to the spatial
derivative.



Phase-space WKB model 2: Lagrangian model

I The phase-space flow (cg , ṁ) is
nondivergent:

∂cg
∂ζ

+
∂ṁ

∂m
=

∂2Ω

∂ζ∂m
− ∂2Ω

∂m∂ζ
= 0

I Flow is therefore area preserving.

I “Ray tracer” solves

DrN
Dτ

≡ ∂N
∂t

+ cg
∂N
∂ζ

+ ṁ
∂N
∂m

= 0

on discrete “ray points” that move
through phase space with velocity (cg , ṁ)

I The region R of nonzero N is
approximated by rectangles.

I The height and width of the rectangles
change with time.

Time t0

Time t1
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nondivergent:

∂cg
∂ζ

+
∂ṁ
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Phase-space WKB model 2: Lagrangian model

I The rectangles attached to ray particles are
used to compute the momentum flux.

I Vertical mean momentum forcing in interval
zi < ζ < zi + ∆z is sum of contributions
from all ray particles (index j):

u′w ′ i = −
1

∆z

∫
R∩Ri

Nikm

(k2 + m2)
3
2

|kN|dmdζ

= −
∑
j

1

∆z

∫
Rj∩Ri

Nikm

(k2 + m2)
3
2

|kNj |dmdζ

= −
∑
j

(
∆z ji
∆z

)∫ mj2

mj1

Nikm

(k2 + m2)
3
2

|kNj |dm

=
∑
j

(
∆z ji
∆z

)
Nik|kNj |

 1(
k2 + m2

j2

) 1
2

−
1(

k2 + m2
j1

) 1
2





Test case: Quasimonochromatic wave packet

I Deceptively simple test case: Gaussian wave packet

b′(x , z , t = 0) = Ab(z) cos(kx + m0z)

u′(x , z , t = 0) = Ab(z)
m0

k

ω̂0

N2
0

sin(kx + m0z)

w ′(x , z , t = 0) = −Ab(z)
ω̂0

N2
0

sin(kx + m0z)

where b′ = NB is buoyancy, m0 is a constant, and

Ab(z) = a0
N2

0

m0
exp

[
− (z − z0)2

2σ2

]
I The waves are statically stable for |a0| < 1.

I Initialization of phase-space wave-action density

N (m, z , t = 0) =


A2

b(z)

2N2
0 ω̂0

1

∆m0
, for m0 − 1

2
∆m0 < m < m0 + 1

2
∆m0

0 , otherwise



Example 1: Hydrostatic wave packet

Background:

Uniform stratification

N =N0 =0.02 s−1

No initial mean flow

U(t0) = 0

Waves:

k = 2π/(3 km)

m0 = −2π/(30 km)

ω = Ω+

a0 = 0.1, 0.5, 0.8



Example 1: Hydrostatic wave packet

I Wave energy and induced mean flow at 200 min. for different amplitudes:

a0 = 0.1 a0 = 0.5 a0 = 0.8
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LES
WNL
wkbFV
wkbRAY
LD

I WKB models (FV and RAY) compare well with weakly nonlinear
wave-resolving model (WNL) and fully nonlinear model INCA (LES)

I Dotted line is linear solution without feedback on mean flow



Example 2: Refraction by a variable stratification

Background:

sinusoidal perturbation
to mean buoyancy between
50 km and 70 km;

N =N0 =0.02 s−1 elsewhere

No initial mean flow

U(t0) = 0

Waves:

k = 2π/(3 km)

m0 = −2π/(30 km)

ω = Ω+

a0 = 0.5



Example 2: Refraction by a variable stratification

I Wave-energy density
versus z and t from
WKB and wave-resolving
models

I Note E becomes small
where N is small
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m
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Example 3: Modulationally unstable wave packet
Background:

Uniform stratification

N =N0 =0.02 s−1

Initial U equal to
pseudomomentum:

U(t0) =
kA2

b(z)

N2
0 ω̂0

Waves:

k = 2π/(2 km)

m0 = −2π/(2.9 km)

ω = Ω+

a0 = 0.21



Example 3: Modulationally unstable wave packet
I Induced mean flow versus z and t in reference frame moving with cg0

(cf. Sutherland 2006):

WNL WKB Ray-tracer WKB FV

a0 = 0.21
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I Focusing and deceleration of wave packet captured by WKB models

I Fine spatial structure of mean flow not captured



Example 4: Wave packet reflected by a shear layer

Background:

Uniform stratification

N = N0 = 0.02 s−1

Jet centred at 70 km

U(t0)=−U00 sech

[
(z − z1)2

Σ2
U

]

Waves:

k = 2π/(3 km)

m0 = 2π/(3 km)

ω = Ω−

a0 = 0.2



Example 4: Wave packet reflected by a shear layer

I Wave-energy density
versus z and t from
WKB and wave-resolving
models

I Standing-wave pattern
below reflecting level
absent in WKB
simulations
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Example 4a: Wave train reflected by a shear layer

I Can find analytic solution to purely linear case of reflection of a steady
wave train by a jet without feedback on the mean flow.

I Consider height z = z0 far from reflecting level, where U(z0) = 0 and let
N = N0 between the positive wavenumbers m = m10 and m = m20.

I In steady case, ω constant along a ray, so N must equal N0 everywhere
between the two characteristic curves m1(z) and m2(z) defined by

kU(z)− kN0√
k2 + m2

j (z)
= ωj

I Energy density as a function of z is then

E(z) = 2N0



∫ m2(z)

m1(z)

ω̂(m)dm, z < z r
1∫ m2(z)

0

ω̂(m)dm, z r
1 < z < z r

2

0 z > z r
2

where z r
j is turning point (reflecting level) of characteristic mj(z).



Example 4a: Wave train reflected by a shear layer
I The integral may be evaluated exactly:∫

ω̂(m)dm = N

∫
1√

1 + m2

k2

dm = Nk log

∣∣∣∣∣mk +

√
1 +

m2

k2

∣∣∣∣∣+ constant
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I In the limit m10,m20 → m00, result tends towards conventional ray-tracing
result obtained from ω = constant and cgA = constant along a ray:

Econv (z)

E(z0)
=

m00

m0(z)

[
k2 + m2

0(z)

k2 + m2
00

]



Summary

I Phase-space WKB equivalent to conventional WKB when Aα and mα

differentiable and single valued

I Solution does not develop singularities (caustics) when none exist in
initial conditions

I Compares well with wave-resolving simulations even in some cases where
WKB assumptions violated (reflection, modulational instability)

I Two numerical implementations:

I robust “Eulerian” finite-volume method
I efficient (but home-made) “Lagrangian” ray-tracer

I Ongoing work:

I experiments with more complicated initial wave fields
(e.g. superposition of several wave packets)

I implementing phase-space WKB in anelastic model where
gravity waves increase in amplitude with height

I parameterization of gravity wave drag due to breaking of waves
I extension to 2 and 3 spatial dimensions, couple to GCM
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