Wave-mean-flow interactions in astrophysical discs and stars Gordon Ogilvie · DAMTP, University of Cambridge

Eddy-mean-flow interactions in fluids KITP, Santa Barbara · 26.03.14

Aims

- Broad but selective overview
- Most technical details omitted
- Links between AFD and GFD

Waves and mean flows in astrophysical discs

Astrophysical discs

Continuous medium in orbital motion around a massive central body

- Usually circular, coplanar and thin
- Usually Keplerian (dominated by gravity of central mass)

$$\Omega = \left(\frac{GM}{r^3}\right)^{1/2}$$

- Hypersonic shear flow set by orbital dynamics
- Angular momentum transport ⇒ slow radial flow, not adjustment of azimuthal mean flow
- Asymptotics / scale separation:

$$\frac{H}{r} \ll 1$$

2D ideal compressible fluid model

Basic equations (difficult to justify formally...)

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u} = -\boldsymbol{\nabla} \Phi - \frac{1}{\Sigma} \boldsymbol{\nabla} P$$
$$\frac{\partial \Sigma}{\partial t} + \boldsymbol{\nabla} \cdot (\Sigma \boldsymbol{u}) = 0$$

Potential vorticity / "vortensity" (Papaloizou & Lin 1989)

$$\zeta = \frac{(\boldsymbol{\nabla} \times \boldsymbol{u})_z}{\Sigma}$$

$$\Gamma = \oint \boldsymbol{u} \cdot \mathrm{d}\boldsymbol{r} = \int (\boldsymbol{\nabla} \times \boldsymbol{u})_z \, \mathrm{d}A$$

$$\text{(barotropic case)}$$

$$M = \int \Sigma \, \mathrm{d}A$$

- Circular disc: specific angular momentum $h=r^2\Omega$, vortensity $\zeta=\frac{1}{r\Sigma}\frac{\mathrm{d}h}{\mathrm{d}r}$
- Special case of MMSN model: $\Sigma \propto \Omega \propto r^{-3/2}$, $\zeta = {\rm const}$

2D ideal compressible fluid model

Basic equations (difficult to justify formally...)

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u} = -\boldsymbol{\nabla} \Phi - \frac{1}{\Sigma} \boldsymbol{\nabla} P$$
$$\frac{\partial \Sigma}{\partial t} + \boldsymbol{\nabla} \cdot (\Sigma \boldsymbol{u}) = 0$$

• Waves on a circular basic state with $\Sigma(r),\,P(r),\,m{u}=r\Omega(r)\,m{e}_\phi$: $\mbox{$\bm{u}'={\rm Re}\,[\tilde{\bm{u}}'(r)\exp({\rm i}m\phi-{\rm i}\omega t)]$ etc.}$

- Fast acoustic-inertial "density wave"
- Slow vortical / Rossby mode
- Coupled near corotation where $\hat{\omega} = \omega m\Omega = 0$

2D ideal compressible fluid model

Local linear dispersion relation for density waves

$$\Sigma' = \operatorname{Re}\left\{\tilde{\Sigma}'(r) \exp\left[im\phi - i\omega t + i\int k(r) dr\right]\right\}$$
$$\hat{\omega}^2 = \kappa^2 - 2\pi G\Sigma |k| + v_s^2 k^2 \qquad \qquad \hat{\omega} = \omega - m\Omega(r)$$

$$Q = \frac{v_{\rm s}\kappa}{\pi G\Sigma}$$

inverse measure of self-gravity

Nonlinear density waves and wakes in Saturn's rings

Generally, rings are filled with nonlinear near-epicyclic oscillations

Density waves

Linear corotation torque (Goldreich & Tremaine 1979)

$$T = \frac{m\pi^2 \Psi^2}{\mathrm{d}\Omega/\mathrm{d}r} \frac{\mathrm{d}}{\mathrm{d}r} \left(\frac{1}{\zeta}\right) \qquad \zeta = \frac{(\nabla \times \boldsymbol{u})_z}{\Sigma}$$

Streamline topology

 Saturation of corotation resonance and torque through vortex formation, cf. critical layers in GFD

Balmforth & Korycansky 2001

Saturation of corotation resonance and torque

 $p \propto \frac{\Psi}{\nu^{2/3}}$

Ogilvie & Lubow 2003

- Baroclinic, 3D, non-ideal and magnetic effects, e.g.:
 - Baruteau & Masset 2008
 - Paardekooper & Papaloizou 2009
 - Paardekooper+ 2011
 - Guilet+ 2013
- All cause modifications of PV / vortensity dynamics
- Importance, in competition with more robust Lindblad torques:
 - Rate and direction of planetary migration
 - Growth or decay of orbital eccentricity

Rossby vortex instability

Lovelace & Hohlfeld 1978; Papaloizou & Lin 1989; Lovelace+ 1999 cf. Papaloizou-Pringle instability, which requires a reflecting edge

Rossby vortex instability
 Nonlinear outcome

x/H

Dittrich+ 2013

x/H

Dittrich+ 2013

Local approximation / shearing box

- Spatially homogeneous model (horizontally)
- Zonal-flow generation requires:
 - Inhomogeneous transport of angular momentum
 - Generation of non-uniform PV / vortensity
 - Modulational instability?

Vortices in astrophysical discs

Vortex formation in MHD turbulence

Fromang & Nelson 2005

Vortices in astrophysical discs

Vortex formation through "subcritical baroclinic instability"

pert Vort, t=87 orb per

Petersen+ 2007

Lesur & Papaloizou 2010

Vortices in astrophysical discs

• Vortex migration through acoustic-inertial wave emission

General Keplerian disc

- Orbits can be variably elliptical and mutually inclined
- Smoothly nested streamlines
- Both shape and mass distribution evolve through collective effects
- Evolutionary equations (Ogilvie 1999, 2001)
- Need to determine how internal stresses depend on local geometry

Local model of a warped disc

Geometry oscillates at orbital frequency

Parametric instability of warped discs

- Floquet analysis of instability of oscillatory laminar flow
- Maximum growth rate versus radial wavenumber

Nonlinear evolution in 2D (S.-J. Paardekooper)

• Keplerian $(q = 1.5, |\psi| = 0.01, \alpha = 0.01)$

amplitudes of internal waves

10^{-1} 10^{-2} 10⁻³ 10^{-4} 10^{-5} 10^{-1} 10^{-2} 10^{-3} 10-4 10^{-5} 10-1 10^{-2} 10⁻³ 10^{-4} 10^{-5} 2000 500 1000 1500 Ωt

internal torque components

Waves and mean flows in stellar interiors

Internal gravity waves in solar-type stars

Propagation:

$$\omega^2 \approx N^2 \frac{k_{\rm h}^2}{k_r^2 + k_{\rm h}^2} \qquad k_{\rm h}^2 = \frac{l(l+1)}{r^2}$$

$$N^{2} = g \left(\frac{1}{\Gamma_{1}} \frac{\mathrm{d} \ln p}{\mathrm{d}r} - \frac{\mathrm{d} \ln \rho}{\mathrm{d}r} \right)$$

- Excitation:
 - Convection
 - Instability
 - Tidal forcing
- Focusing towards stellar centre
- Dissipation:
 - Linear (radiative damping)
 - Nonlinear (wave breaking, parametric instability)

0.4

r/R

0.6

8.0

1.0

0.000

0.0

0.2

Excitation of internal gravity waves by convection

Excitation of internal gravity waves by convection

- Mixing of elements in solar core:
 - Solar neutrino problem (Press 1981)
 - Li abundance problem (García Lopez & Spruit 1991)
- Redistribution of angular momentum:
 - Mean flow of the form $\bar{\boldsymbol{u}} = \Omega(r,\theta) r \sin\theta \, \boldsymbol{e}_{\phi}$
 - Maintenance of uniform rotation?
 (Schatzman 1993; Kumar & Quataert 1997; Zahn+ 1997)
 - Sign error corrected! (Ringot 1998)
 - Enhancement of differential rotation (Kumar+ 1999)
 - Time-dependent behaviour, perhaps more complicated than QBO (Rogers & Glatzmaier 2005-6)
 - Magnetic field bound to be important

Excitation of internal gravity waves by convection

 Internal solar rotation determined from helioseismology

Stellar structure

More massive stars

- Excitation by convection
 - Modulation of surface rotation (Rogers+ 2012-3)
 - Explanation of observed spin-orbit misalignments?

Excitation of internal gravity waves by tidal forcing

Breaking of internal gravity waves near stellar centre

Near stellar centre:

$$N^{2} = g \left(\frac{1}{\Gamma_{1}} \frac{\mathrm{d} \ln p}{\mathrm{d}r} - \frac{\mathrm{d} \ln \rho}{\mathrm{d}r} \right)$$

$$N = N_1 r + N_3 r^3 + \cdots$$

 N_1 generally increases with stellar mass and age

monochromatic wave

Breaking of internal gravity waves near stellar centre

distance from stellar centre

Barker & Ogilvie (2010), cf. Goodman & Dickson (1998) Typical wavelength $0.001-0.01\,R_{\odot}$

Barker & Ogilvie 2011

Lower amplitude: standing wave

Barker & Ogilvie 2011

Lower amplitude: standing wave

Barker & Ogilvie 2011

Higher amplitude: breaking wave

Barker & Ogilvie 2011

Higher amplitude: breaking wave

Barker & Ogilvie 2011 Breaking wave

Barker & Ogilvie 2011 Breaking wave

Implications

Waves break at centre if

$$\frac{M_{\rm p}}{M_{\rm J}} > 3.6 \left(\frac{P_{\rm orb}}{\rm day}\right)^{-1/6}$$

or more easily in older or slightly more massive stars

• If this occurs, planet is devoured within $1.4\,{
m Myr}\left(\frac{M_{
m p}}{M_{
m J}}\right)^{-1}\left(\frac{P_{
m orb}}{{
m day}}\right)^{7.1}$

- Advancing critical layer could in principle be initiated by gradual radiative damping of waves of lower amplitude, but differential rotation may be erased by competing mechanisms
- More massive stars: Goldreich & Nicholson (1989)

Ogilvie 2009

Ogilvie 2009

singularity

Ogilvie 2009

Ogilvie 2009

Favier+ 2014

Favier+ 2014

Instability of zonal flows

meridional plane

Favier+ 2014

Instability of zonal flows

Favier+ 2014

Summary

- Waves in discs: slow corotational dynamics involving mean flows determines torques and hence evolution of planetary orbits
- Localized zonal flows or vortices emerge from turbulence in a spatially homogeneous model
- In warped and eccentric discs internal waves are destabilized and their stresses may control the evolution of the disc
- Internal gravity waves are generated in stars by tidal forcing and convection
- Breaking of tidally forced gravity waves can lead to destruction of the planetary companion
- Interplay between tidally forced inertial waves and zonal flows is more complicated and merits further investigation