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Aims

● Broad but selective overview
● Most technical details omitted
● Links between AFD and GFD



Waves and mean flows
in astrophysical discs





Continuous medium in orbital motion around a massive central body
● Usually circular, coplanar and thin
● Usually Keplerian (dominated by

● Hypersonic shear flow set by

gravity of central mass)
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Astrophysical discs

● Asymptotics / scale separation:
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orbital dynamics

of azimuthal mean flow



2D ideal compressible fluid model

● Potential vorticity / “vortensity” (Papaloizou & Lin 1989)
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● Waves on a circular basic state with                                          :
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● Fast acoustic-inertial “density wave”
● Slow vortical / Rossby mode
● Coupled near corotation where !̂ = ! �m⌦ = 0

2D ideal compressible fluid model

● Basic equations (difficult to justify formally...)
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● Local linear dispersion relation for density waves
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Nonlinear density waves and wakes in Saturn’s rings

● Generally, rings are filled with nonlinear near-epicyclic oscillations



Density waves

outer Lindblad resonance (!̂ = +)

inner Lindblad resonance (!̂ = �)

corotation resonance (!̂ = 0)

density
waves





Corotational dynamics

● Linear corotation torque (Goldreich & Tremaine 1979)
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● Streamline topology
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FIG. 1.È(aÈc) A 15 protoplanet embedded in a 4% aspect ratio disk, once a steady state has been reached. The details of the run are unimportant hereM
^since these Ðgures are for illustration purpose only and closely resemble other runs presented elsewhere (see, e.g., Masset & Snellgrove 2001 or Nelson et al.

2000). (d) Streamlines that fulÐll the prescriptions 1È3 of ° 3.2. (e, f) The same situation, except for a n-shift in azimuth. The run they are extracted from di†ers
from the run of panels a to c only by the viscosity, which has been set this time to a very high value. In panels (d)È( f), the solid line in the outer and inner disk
(outside of the shadedÈlibratingÈregion) represents a unique streamline, which is also, since we are dealing with a steady Ñow, the path of a Ñuid element on
its way to the central star.

we approximate the action of the planet on the Ñow with
the following prescription :

1. The planet acts on a Ñuid element at h \ 0 (modulo
2n) only (i.e., at a conjunction).

2. If the distance o x o of the Ñuid element to the orbit
when it is in conjunction with the planet is smaller than
some threshold value (which corresponds to the half-x

cwidth of the horseshoe region), then the Ñuid element is
““ reÑected ÏÏ with respect to the planet orbit and sent to (h,
[x). Otherwise no action is taken on the Ñuid element.
This is meant to mimic the U-turn of the Ñuid element at the
end of the horse streamlines in the horseshoe region.

3. The Ñuid element velocity is assumed everywhere to be
the velocity in the unperturbed disk.

Obviously, this oversimple prescription reproduces in an
inviscid case the main properties outlined in the previous
section ; i.e., it gives rectangular librating streamlines in the
horseshoe region (the width of which is and circulating2x

c
)

circular streamlines in the outer and inner disk. However,
there is no wake. In a viscous disk with uniform viscosity
and surface density, the Ñuid element velocity in the coro-
tating frame is given by (if we assume the radial extent of the
co-orbital region to be small compared to the planet
distance)

x5 \ [ 3
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, h5 \ [ 3
2

)
p
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which integrates as

h \ 1
2

)
p

l x2 ] h0 . (2)

The streamlines are therefore arcs of parabola, and the
sketch of the streamlines that respect the prescription given
above is represented in Figure 1d. If we follow the path of a
Ñuid element along the solid streamline originating in the
outer disk, we see that Ðrst this Ñuid element has a circulat-
ing trajectory and approaches progressively the planet co-
orbital zone. The distance between two successive
intersections of the streamline with, say, h \ 0 axis increases
steadily since the angular frequency mismatch between the
planet and the Ñuid element decreases. When the Ñuid
element reaches the point A@, it is not sent on the other side
of the orbit since its distance to the planet is still larger than

However, along the arc A@A, it crosses the horseshoex
c
.

region outer boundary, and when it reaches A, it is sent to B
and therefore gives to the planet, during this close encoun-
ter, the positive amount of angular momentum that it loses.
It then follows its path along BB@, which by construction is
symmetric to AA@ ; therefore, when it reaches B@, it is out of
the horseshoe region, and therefore it keeps circulating in
the inner disk and eventually gets accreted onto the
primary.

One can wonder how this schematic picture changes in a
more realistic case. First, it can be useful to notice that in a
two-dimensional steady Ñow deÐned on a compact domain,

Masset 2001



Corotational dynamics

● Saturation of corotation resonance and torque
Figure 4. Snapshots of the total vorticity, q ¼ z1 by, drawn as densities on the (u,Y ) plane. The snapshots are taken at T ¼ 0:5, 1, 2, 3, 4, 6, 8, 10 and 12. The

shading is given by the key in Fig. 6.
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Figure 5. A continuation of Fig. 4, showing an epoch of secondary instability and vortex formation. The snapshots are taken at T ¼ 16, 17, 18, 19, 20, 22, 24,

26 and 30. The shading is given by the key in Fig. 6.
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   through vortex formation, cf. critical layers in GFD



Corotational dynamics

● Saturation of corotation resonance and torque

Ogilvie & Lubow 2003

3.9. Approximate Solutions for Small and Large p

Approximate solutions can be obtained by neglecting G2
andG!2 in equations (50) and (51). This amounts to a severe
Fourier truncation of the problem, in which we allow for
the solution to feed back on the axisymmetric part of the
disk but neglect the excitation of higher harmonics. Never-
theless, this method is found to give results in close agree-
ment with the more accurate numerical solutions described
in x 3.10.

Defining G" ¼ G1 " G!1 and taking the sum and differ-
ence of equations (50) and (51), we obtain

dGþ

d~kk
þ ~kk2 þ 2p2
! "

G! ¼ 2! ~kk
! "

; ð58Þ

dG!

d~kk
þ ~kk2Gþ ¼ 0 ; ð59Þ

and so

! d

d~kk

1
~kk2

dG!

d~kk

# $
þ ~kk2 þ 2p2
! "

G! ¼ 2! ~kk
! "

: ð60Þ

For p25 1 the solution can be expanded in powers of p2:

G! ¼ Gð0Þ
! þ p2Gð1Þ

! þOðp4Þ : ð61Þ

Using the fact that the bounded solution of the equation

! d2y

dx2
þ y ¼ 2f ðxÞ ð62Þ

is

yðxÞ ¼
Z 1

!1
f ðx0Þe!jx!x0 j dx0 ; ð63Þ

we find, at successive orders in p2,

Gð0Þ
! ~kk
! "

¼ exp !1
3
~kk3
%% %%

! "
; ð64Þ

Gð1Þ
! ~kk
! "

¼ !
Z 1

!1
exp !1

3
~kk03
%% %%! 1

3
~kk3 ! ~kk03
%% %%

! "
d~kk0 : ð65Þ

The dimensionless torque is then

tc ¼ G!ð0Þ ¼ 1! 2
3

& '2=3
! 1

3

& '
p2 þO p4

& '

' 1! 2:044p2 : ð66Þ

This asymptotic form can be shown to be correct even when
the coupling to higher harmonics is taken into account. In
this limit of small p, only wavenumbers j~kkjd1 contribute
significantly to the solution.

For p241 we can neglect ~kk2 relative to 2p2 in equation
(60). The solution is then

G! ~kk
! "

' 21=8

! 1=4ð Þ
p!3=4 ~kk

%% %%3=2K3=4 2!1=2p~kk2
! "

; ð67Þ

where K is the modified Bessel function of the second kind,
and the dimensionless torque is

tc ¼ G!ð0Þ '
! 3=4ð Þ
! 1=4ð Þ

21=4p!3=2 ' 0:4019p!3=2 : ð68Þ

Since p / "!2=3, this implies that the torque is proportional

to the viscosity when the viscosity is small. This is to be
expected on general grounds, but to neglect the coupling to
higher harmonics is difficult to justify formally when p is
large. The above form of G! indicates that only wavenum-
bers j~kkjdp!1=2 contribute significantly.

3.10. Numerical Solution

For a numerical solution, we truncate the system at some
orderN and set Gn to 0 for jnj > N. We then solve equations
(50) and (51) together with equation (44) for 2 ( jnj ( N.
Now the symmetry property in equation (37) allows us to
consider ~kk > 0 only, and the jump conditions at ~kk ¼ 0 imply

Gnð0þÞ þ G!nð0þÞ ¼ !n;1; n > 0 : ð69Þ

We integrate the equations from ~kk ¼ 0þ to a finite value
~kk ¼ ~kkmax. A ‘‘ particular solution ’’ GðpÞ

n satisfying the inho-
mogeneous boundary condition (69) is generated by starting
from the initial condition G1 ¼ 1 (Gn ¼ 0 otherwise). Then,
N ‘‘ complementary functions ’’ Gðc;qÞ

n are generated by
starting from initial conditions Gq ¼ !G!q ¼ 1 (Gn ¼ 0
otherwise) for each q ¼ 1; . . . ; N. The amplitudes of the
complementary functions appearing in the desired solution
are determined by requiring that Gnð~kkmaxÞ ¼ 0 for
!N ( n ( !1. This simulates the requirement that Gn
should tend to 0 as j~kkj ! 1. For n < 0, Gn has a ten-
dency to grow as exp½ 1=3ð Þ~kk3=jnj* as ~kk ! 1, and our
boundary condition is designed to eliminate such growing
solutions. For n > 0,Gn tends to decay naturally as ~kk ! 1.

In Figure 1 we plot the dimensionless torque tc deter-
mined from the numerical solution as a function of the cou-
pling parameter p. The solution converges rapidly as N and
~kkmax are increased, and good agreement is found with the
approximate solutions in equations (66) and (68) for small
and large p.

Fig. 1.—Dimensionless torque vs. coupling parameter. The curves calcu-
lated for truncation orders N ¼ 1; . . . ; 5 and ~kkmax ¼ 3 are plotted as solid
lines; the curve for N ¼ 1 lies slightly below the others, while those for
N > 1 are indistinguishable by eye. The dotted line shows the small-p
approximation (eq. [66]) and the dashed line shows the large-p approxima-
tion (eq. [68]), to which the curve forN ¼ 1 asymptotes.
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Corotational dynamics

● Baroclinic, 3D, non-ideal and magnetic effects, e.g.:

● Paardekooper & Papaloizou 2009

● Importance, in competition with more robust Lindblad torques:
● Rate and direction of planetary migration
● Growth or decay of orbital eccentricity

● Baruteau & Masset 2008

● Guilet+ 2013
● Paardekooper+ 2011

● All cause modifications of PV / vortensity dynamics



Corotational dynamics

● Rossby vortex instability

Lovelace & Hohlfeld 1978; Papaloizou & Lin 1989; Lovelace+ 1999

Meheut+ 2013

cf. Papaloizou–Pringle instability, which requires a reflecting edge



Corotational dynamics

Li+ 2001

● Rossby vortex instability
Nonlinear outcome



Zonal flows in astrophysical discs

Whipple 1972

�r⌦2 = �GM

r2
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Zonal flows in astrophysical discs
The Astrophysical Journal, 763:117 (17pp), 2013 February 1 Dittrich, Klahr, & Johansen
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Figure 2. Collage of four gas surface density representations of the runs y-XL, XL, M, and x-XL. Each snapshot was taken after 85Torb. These plots show that gas
overdensities are most pronounced in the largest box. The non-axisymmetric structures have very short lifetimes—less than a tenth of an orbit. The pressure bump
structures are more visible when the density is averaged over the azimuthal direction (Figure 3). The black dots represent the position of every 100th particle, integrated
in vertical direction. The particles are trapped both in axisymmetric pressure bumps and in spiral density waves as described in Heinemann & Papaloizou (2009).
(A color version of this figure is available in the online journal.)

slowed by the maxima of the azimuthal gas velocity, i.e., the
large-scale maxima of the pressure gradients. The velocity has
large-scale structures that are very similar to those of the density
gradient, as expected in geostrophic balance. Thus, the structure
of the velocity gradient can be approximated as the large-
scale structure of the second derivative of the gas density. It is
shown in the lower right panel that the particles get stopped
at the minima of the radial derivative of the azimuthal gas
velocity (and thus at minima of the second derivative of the
gas density) as analytically predicted (see, e.g., Klahr & Lin
2001).

We calculated the correlation time of the pressure bumps
and the zonal flows in the same way as it was calculated in
Johansen et al. (2009a). We use the density ρ, averaged over
azimuthal and vertical directions, at a given time t. Then, we
average over each point in radial direction the time it takes for
the density at each point to change by a value corresponding to
the standard deviation of the gas density. These measurements
are taken for every local orbit. The measurements are averaged
over the time between saturation of the turbulence and a time
when the correlation does not extend the correlation time to the
final time of the simulation. Finally, the averages are multiplied
by two, in order to cover the full temporal extent of the correlated
structures. The correlation times measured in this fashion are
in good agreement with the lifetime of the overdensities that is
seen in Figures 4 and 5. However, a change of position of the
structures, as seen in run XL (see Figure 4), is not accounted for.
Thus, correlation times are more likely to be underestimated

than overestimated. Also, we cannot be entirely sure whether
this behavior is really drift or structure decay and reformation.

The results of the correlation time determination are shown
in Table 3 and in the upper panel of Figure 6. For the diagonal
simulation set, (A), the correlation time increases with box size.
It seems to saturate toward the largest box size. The trend to
longer correlation times is also evident for simulation set B. Here
only run x-XL has a shorter correlation time than expected. This
might be an effect of the strongly stretched simulation box. The
correlation time decreases slightly with an increasing azimuthal
box size in simulation set C (not shown in the figure). The lower
panel in Figure 6 shows a measurement for the physical size of
the zonal flow features. We Fourier-transformed the vertically
and azimuthally averaged gas density and azimuthal gas velocity
for each time step and averaged the amplitudes of the first four
modes over the time of 20 . . . 120 local orbits. The length was
normalized for the size of the simulation box, to get the physical
size of the modes by λx = Lx/kx with the wave number kx.
The turbulence is always strongest at the largest modes for
simulations with Lx ! 5H . The highest amplitude for both
quantities in the largest simulation domain is found between
5H and 7H (up to 10H for ρ̂). These measurements are also
found in Table 3.

The runs L_SAFI and XL_SAFI were carried out to compare
the turbulence and zonal flow parameters with the runs L and
XL. They were run to check that zonal flows are no effects from
the shear advection scheme that was used in the Pencil Code.
Comparing the values in Tables 2 and 3 shows that there is
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Zonal flows in astrophysical discs

Dittrich+ 2013

The Astrophysical Journal, 763:117 (17pp), 2013 February 1 Dittrich, Klahr, & Johansen
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Figure 3. Surface density distribution of Figure 2, averaged in azimuthal direction and averaged over the mean surface density. This reveals axisymmetric pressure
bumps and valleys. Particles are trapped on the inner side of the density maxima, at places with a positive density gradient to overcome the negative global pressure
gradient. These pressure bumps are stable for many orbits (compare Figures 4 and 5).
(A color version of this figure is available in the online journal.)

Table 3
Zonal Flow Properties

Run ρrms |ρ̂(kx = 1)| |ρ̂(kx = 2)| |ρ̂(kx = 3)| | ˆ̃uy (kx = 1)| | ˆ̃uy (kx = 2)| | ˆ̃uy (kx = 3)| τcorr
(1) (2) (3) (4) (5) (6) (7) (8) (9)

S 6.1 × 10−3 4.1 × 10−3 7.5 × 10−4 4.0 × 10−4 9.9 × 10−3 3.4 × 10−3 2.1 × 10−3 7.6
M 2.0 × 10−2 1.0 × 10−2 2.5 × 10−3 1.6 × 10−3 1.2 × 10−2 5.2 × 10−3 3.1 × 10−3 11.2
L 3.9 × 10−2 2.1 × 10−2 5.6 × 10−3 3.2 × 10−3 1.3 × 10−2 6.5 × 10−3 3.7 × 10−3 23.2
XL 4.3 × 10−2 1.5 × 10−2 1.1 × 10−2 5.0 × 10−3 4.6 × 10−3 6.6 × 10−3 4.3 × 10−3 43.2
XXL 4.0 × 10−2 5.0 × 10−3 7.9 × 10−3 7.9 × 10−3 7.8 × 10−4 2.4 × 10−3 3.5 × 10−3 47.3

x-S 1.6 × 10−2 3.9 × 10−3 1.7 × 10−3 1.2 × 10−3 8.0 × 10−3 3.2 × 10−3 2.0 × 10−3 4.4
x-L 3.3 × 10−2 2.3 × 10−2 7.3 × 10−3 2.7 × 10−3 1.4 × 10−2 8.8 × 10−3 4.7 × 10−3 37.6
x-XL 2.7 × 10−2 1.2 × 10−2 1.0 × 10−2 6.4 × 10−3 3.5 × 10−3 6.2 × 10−3 5.6 × 10−3 20.2

y-S 1.2 × 10−2 9.9 × 10−3 2.4 × 10−3 1.1 × 10−3 1.2 × 10−2 5.9 × 10−3 4.1 × 10−3 14.4
y-L 3.0 × 10−2 6.9 × 10−3 3.8 × 10−3 3.1 × 10−3 7.8 × 10−3 3.7 × 10−3 2.3 × 10−3 10.8
y-XL 3.6 × 10−2 5.6 × 10−3 4.1 × 10−3 3.3 × 10−3 5.7 × 10−3 2.6 × 10−3 1.6 × 10−3 10.3

LspecMR 3.7 × 10−2 1.8 × 10−2 5.5 × 10−3 3.1 × 10−3 1.1 × 10−2 6.1 × 10−3 3.6 × 10−3 21.8
LspecHR 4.2 × 10−2 9.8 × 10−3 3.2 × 10−3 2.0 × 10−3 5.8 × 10−3 3.6 × 10−3 2.0 × 10−3 23.4
LspecMRs 4.3 × 10−2 2.4 × 10−2 5.4 × 10−3 3.2 × 10−3 1.4 × 10−2 6.1 × 10−3 3.9 × 10−3 10.9
MspecMRb 1.9 × 10−2 8.6 × 10−3 2.6 × 10−3 1.6 × 10−3 1.0 × 10−2 5.3 × 10−3 3.1 × 10−3 26.4

L_SAFI 3.9 × 10−2 2.1 × 10−2 5.3 × 10−3 3.2 × 10−3 1.2 × 10−2 6.1 × 10−3 3.9 × 10−3 25.6
XL_SAFI 4.8 × 10−2 2.4 × 10−2 1.0 × 10−2 5.4 × 10−3 7.0 × 10−3 6.2 × 10−3 4.8 × 10−3 48.6

Notes. Column 1: name of run. Column 2: root-mean-square density ρrms =
√

〈(ρ − ρ)2〉. Columns 3–5: Fourier amplitude of radial density modes kx = 1 . . . 3,
normalized by mean density in the box. Columns 6–8: Fourier amplitude of azimuthal velocity modes kx = 1 . . . 3 with ũy = uy − uy . Column 9: correlation time, in
orbits T = 2πΩ−1, of the largest radial density mode.

little change in the measured properties of the zonal flows and
the associated pressure bumps. However, the computation time
increases if one uses the SAFI scheme. Thus, this scheme was
only used to confirm our results.

4. PARTICLE BEHAVIOR IN ZONAL FLOWS

Particle accumulations and planetesimal formation can oc-
cur in clumps and filaments of the overdensities in the dust.
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Local approximation / shearing box

● Spatially homogeneous model (horizontally)
● Zonal-flow generation requires:
● Inhomogeneous transport of angular momentum 
● Generation of non-uniform PV / vortensity
● Modulational instability?



Zonal flows in astrophysical discs

Simon+ 2012



Vortices in astrophysical discs

Fromang & Nelson 2005

● Vortex formation in MHD turbulence



Vortices in astrophysical discs

Lesur & Papaloizou 2010

A&A 513, A60 (2010)
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Fig. 2. Evolution of the vorticity in the fiducial case. Top row has a baroclinic term with Ri = −0.01. Bottom row has no baroclinicity. We show
t = 10 (left), t = 100 (middle), t = 500 (right).
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Fig. 3. Vorticity map for Ri = −0.02 (left) and Ri = −0.16 (right) at t = 500. As already shown by the spectra, small scales are dominant for
larger |Ri|.

3.3. Influence of thermal diffusion

The importance of thermal cooling and thermal diffusion was
already pointed out by Petersen et al. (2007b). To check this de-
pendancy in our local model, we have considered several simula-
tions with Ri = −0.01, varying Pe from Pe = 20 to Pe = 16 000.
The resulting enstrophy evolution is presented for several of
these runs in Fig. 6. Looking at the snapshots of the vorticity
field for these simulations, we find the SBI approximatively for
50 ≤ Pe ≤ 8000. Assuming a typical vortex size l ∼ 0.25 (see e.g.
Fig. 2), these Peclet numbers correspond to thermal diffusion
times 3 S −1 ≤ τdiff ≤ 500 S −1 over the vortex size, with an opti-
mum found for τdiff $ 10 S −1 (Pe = 250). Note that the cooling
time used by Petersen et al. (2007b) lies typically in this range
of values.

3.4. Instability mechanism

Since the flow is subcritically unstable, no linear analysis can
capture this instability entirely. As shown by Johnson & Gammie
(2005a), an ensemble of shearing waves in a baroclinic flow is
subject to a transient growth with an amplification going asymp-
totically like1 |Ri|t1−4Ri for |Ri| % 1 when µ = ν = 0, the waves
being ultimately decaying when µ > 0 or ν > 0. However, this
tells us little to nothing about the nonlinear behaviour of such a
flow. Indeed, it is known that barotropic Keplerian flows undergo
arbitrarily large transient amplifications (see e.g. Chagelishvili
et al. 2003), but subcritical transitions are yet to be found in
that case (Hawley et al. 1999; Lesur & Longaretti 2005; Ji et al.
2006). In the SBI case, the subcritical transition happens only for
negative Ri as shown above, in flagrant contradiction with the
linear amplification described by Johnson & Gammie (2005a).

1 Note that the amplification occurs independently of the sign of Ri,
as already mentioned by Johnson & Gammie (2005a).
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● Vortex formation through “subcritical baroclinic instability”



Vortices in astrophysical discs

Paardekooper+ 2010
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Figure1.Relativeperturbationofvortensity(top)anddensity(bottom)after
10orbitsatr=1foranisothermaldiskwithH0=0.1r0,α=3/2,and
aninitialvelocityperturbationof0.5csoveracircularregionofradiusH0/2
aroundr=1,ϕ=π.

dealwithvortexasymmetriesinSection5.4;here,wejustnote
thatforα=3/2,thevortexissymmetrictoahighdegree.The
resultingmigrationofthevortexisshowninFigure2.

Indeedthevortexmigratesinward.Resultsareshownfor
threeresolutionsinFigure2.Thelowestresolutionhas16cells
perscaleheight,radially,atr0.Inotherwords,thevortexis
resolvedbyapproximately8cellsonly,intheradialdirection.
Inthiscase,thevortexweakensthroughnumericaldiffusion,
whichstartstoslowdownthemigrationrateafter10orbits.
Doublingtheresolutionpushesthistimetoward20orbits,and
doublingitagaingivesasteadymigrationrateforatleast
40orbits.Atearlytimes,themigrationrateissimilarforall
resolutionsandweconcludethatthismigrationrateisconverged
withrespecttonumericalresolution.Itresultsinamigration
timescaleofr0/|ṙ|≈2000Ω−1

0or300orbitsatr=r0.Itis
clearthatforthisdisk,vortexmigrationisanimportantprocess
toconsider.Additionalrunsthatincludedviscosity,withthe
kinematicviscosityνparameterizedusingtheα-prescription,
ν=αvcsH,indicatedthatthenumericaldissipationofthese
vorticesroughlycorrespondtoαv=10−4,10−5and10−6,
respectively,forthelow-,medium-,andhigh-resolutioncases
showninFigure2.

010203040
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rvort

∆r=0.0062
∆r=0.0031
∆r=0.0016

Figure2.Timeevolutionoftheradiallocationofthevortex,forthreedifferent
resolutions.DiskandvortexparametersarethesameasinFigure1.

4.2.WaveAction

Densitywavespropagateinwardandoutwardawayfromthe
vortex.Providedthevortexisnottoostrong,weexpectthewaves
tobeinthelinearregimeclosetothevortex,becomingnonlinear
atlargerdistanceswhereshocksareformed(e.g.,Goodman&
Rafikov2001)andtheiramplitudereduces.Whileinthelinear
regime,thetotalrateofflowofangularmomentumacrossa
radiallocationthatisassociatedwiththewaves,orequivalently
thewaveaction,isconserved.Whenthenonlinearregime
isenteredanddissipationoccurs,thewaveactiondecreases.
Angularmomentumisadvectedinwardintheradialdirection
atarategivenby

A=2πr
2
〈Σvrvϕ〉,(4)

wheretheanglebracketsdenoteanazimuthalaverage.Because
thereisnonetmassflowassociatedwithlinearwaves,theaz-
imuthalvelocityperturbationalonemaybeusedinEquation(4)
inthiscase.Weremarkthat,bymakinguseofthelinearized
equationsgoverningthewavesispossibletowriteEquation(4)
inadifferentform.ThewaveshaveapatternspeedΩvortwhich
isalsotheangularvelocityofthevortex.Thusfortheperturba-
tionsassociatedwiththem,wehave

Ωvort
∂

∂ϕ
=

∂

∂t
.(5)

Accordingly,theperturbedazimuthalcomponentoftheequation
ofmotiongives

(Ω−Ωvort)
∂vϕ

∂ϕ
+

κ2

2Ω
vr=−

c2
s

rΣ
∂Σ′

∂ϕ
,(6)

whereΣ′isthesurfacedensityperturbation.Notingthattolinear
order,theLagrangiandisplacementξrsatisfies

vr=(Ω−Ωvort)
∂ξr

∂ϕ
,(7)

● Vortex migration through acoustic-inertial wave emission



General Keplerian disc

● Orbits can be variably elliptical and mutually inclined
● Smoothly nested streamlines
● Both shape and mass distribution evolve through collective effects
● Evolutionary equations (Ogilvie 1999, 2001)
● Need to determine how internal stresses depend on local geometry



Local model of a warped disc

● Geometry oscillates at orbital frequency

Ogilvie & Latter 2013



Parametric instability of warped discs

● Floquet analysis of instability of oscillatory laminar flow
● Maximum growth rate versus radial wavenumber

Ogilvie & Latter 2013
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Nonlinear evolution in 2D (S.-J. Paardekooper)

● Keplerian (q = 1.5, | | = 0.01, ↵ = 0.01)

internal torque componentsamplitudes of internal waves



Waves and mean flows
in stellar interiors



Internal gravity waves in solar-type stars

● Propagation:

● Excitation:
● Convection
● Instability
● Tidal forcing

present Sun

(2⌦ ⇡ 5.4⇥ 10�6 s�1)

N2 = g

✓
1

�1

d ln p

dr
� d ln ⇢

dr

◆

!2 ⇡ N2 k2h
k2r + k2h

k2h =
l(l + 1)

r2

● Focusing towards stellar centre
● Dissipation:

slowly rotating

● Linear (radiative damping)
● Nonlinear (wave breaking, parametric instability)



Excitation of internal gravity waves by convection

Alvan+ 2014



Alvan+ 2014

Excitation of internal gravity waves by convection



● Mixing of elements in solar core:
● Solar neutrino problem (Press 1981)
● Li abundance problem (García Lopez & Spruit 1991)

● Redistribution of angular momentum:

● Maintenance of uniform rotation?
(Schatzman 1993; Kumar & Quataert 1997; Zahn+ 1997)

● Sign error corrected! (Ringot 1998)
● Enhancement of differential rotation (Kumar+ 1999)
● Time-dependent behaviour, perhaps more complicated than QBO

Excitation of internal gravity waves by convection

   (Rogers & Glatzmaier 2005-6)

● Mean flow of the form ū = ⌦(r, ✓) r sin ✓ e�

● Magnetic field bound to be important



Excitation of internal gravity waves by convection

● Internal solar rotation
determined from
helioseismology

radiative
zone

convective
zone



solar-type star

convective 
core

radiative 
envelope

radiative 
core

convective 
envelope

Stellar structure

more massive star



More massive stars

● Excitation by convection
● Modulation of surface rotation (Rogers+ 2012-3)
● Explanation of observed spin–orbit misalignments?
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Excitation of internal gravity waves by tidal forcing



Excitation of internal gravity waves by tidal forcing
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Breaking of internal gravity waves near stellar centre
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with stellar mass and age
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Breaking of internal gravity waves near stellar centre

distance from stellar centre
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Barker & Ogilvie (2010), cf. Goodman & Dickson (1998)
Typical wavelength 0.001� 0.01R�



3D numerical simulations

Barker & Ogilvie 2011
Lower amplitude: standing wave

equatorial
plane



3D numerical simulations

Barker & Ogilvie 2011
Lower amplitude: standing wave

meridional
plane



3D numerical simulations

Barker & Ogilvie 2011
Higher amplitude: breaking wave

equatorial
plane



3D numerical simulations

Barker & Ogilvie 2011
Higher amplitude: breaking wave

meridional
plane



3D numerical simulations

Barker & Ogilvie 2011
Breaking wave

equatorial
plane



3D numerical simulations

Barker & Ogilvie 2011
Breaking wave

meridional
plane



Implications

● Waves break at centre if

or more easily in older or slightly more massive stars

● If this occurs, planet is devoured within
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● Advancing critical layer could in principle be initiated by gradual
radiative damping of waves of lower amplitude, but differential
rotation may be erased by competing mechanisms

● More massive stars: Goldreich & Nicholson (1989)



Ogilvie 2009

Tidally forced inertial waves and zonal flows
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critical latitude
singularity

Tidally forced inertial waves and zonal flows

Ogilvie 2009



Tidally forced inertial waves and zonal flows

Ogilvie 2009
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wave attractors

Tidally forced inertial waves and zonal flows

Ogilvie 2009



Tidally forced inertial waves and zonal flows

Ogilvie 2009
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Tidally forced inertial waves and zonal flows
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(linear)

Tidally forced inertial waves and zonal flows



Favier+ 2014!/⌦ = �0.2

Tidally forced inertial waves and zonal flows



Favier+ 2014!/⌦ = �0.8

Tidally forced inertial waves and zonal flows



Favier+ 2014!/⌦ = �1.6

Tidally forced inertial waves and zonal flows



Favier+ 2014!/⌦ = 0.6

Tidally forced inertial waves and zonal flows



Favier+ 2014!/⌦ = 1.0

Tidally forced inertial waves and zonal flows



Favier+ 2014!/⌦ = 1.87

Tidally forced inertial waves and zonal flows



1e-07

1e-06

1e-05

0.0001

0.001

0.01

1e-06 1e-05 0.0001 0.001

E
d

r

Ekman number E

∼ E
−1/2

∼ E
−3/2

ω/Ω = 0.88

ω/Ω = 1

ω/Ω = 1.1

en
er

gy
 in

 d
iff

er
en

tia
l r

ot
at

io
n

Favier+ 2014

Tidally forced inertial waves and zonal flows



Favier+ 2014
meridional plane

● Instability of zonal flows

Tidally forced inertial waves and zonal flows



● Instability of zonal flows

equatorial plane
Favier+ 2014

Tidally forced inertial waves and zonal flows



Summary

● Waves in discs: slow corotational dynamics involving mean flows

● Localized zonal flows or vortices emerge from turbulence in a

● In warped and eccentric discs internal waves are destabilized and

determines torques and hence evolution of planetary orbits

spatially homogeneous model

their stresses may control the evolution of the disc

● Internal gravity waves are generated in stars by tidal forcing and
convection

● Breaking of tidally forced gravity waves can lead to destruction
of the planetary companion

● Interplay between tidally forced inertial waves and zonal flows
is more complicated and merits further investigation


