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Introduction and motivation

Schematic for the n-layer model.

The dynamics of astrophysical objects are dominated
by the fluid motions of electrically conducting media.
In some cases, plasma is confined to a ‘shallow’ layer;
the solar tachocline, a thin layer of velocity shear at
the base of the convective zone in the Sun, is a prime
example. Being at most 4% of the solar radius in thick-
ness [2], and stably stratified, the tachocline lends itself

to shallow water analysis.

The rotation profile of the Sun. The inner two thirds by radius
exhibits approximate solid-body rotation, whereas the outer con-
vection zone rotates differentially. The tachocline is the transition
layer between the two.

The n-layer stacked shallow water system is
a conceptual model for continuous stratifica-
tion in fluid layers with a small aspect ra-
tio of vertical to horizontal length scales. We
consider small-amplitude long-wavelength per-
turbations to a motionless n-layer system.
Waves would almost certainly be present in the
tachocline, and could contribute to our under-
standing of mixing mechanisms, how energy
is transferred, and perhaps even the lithium
problem.

The shallow water approximation

Scaling arguments in the vertical yield a balance between the total pressure
gradient and gravity (magnetohydrostatic balance). Integrating, one can find
an expression for pressure, which can then be used to modify the horizontal
momentum equation. Together with a shallow water induction equation and a
modified conservation of mass, we have

∂u
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where h = H + η0 is the depth of the layer. All vectors and differential
operators are 2-dimensional (horizontal) and independent of height [1]. Velocity
and magnetic field have a third, vertical component, but these are implied by
solenoidal conditions and do not contribute to the dynamics of the system.
These equations are complemented by the condition
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= 0. (4)

Figures for the solar tachocline

Property Symbol Value Units
Density ρ 210 kg m−3

Gravity g 54 m s−2

Buoyancy frequency N 8× 10−5 s−1

Mean depth H 0.03 R�
Mean field strength |B| 0.2 T

Gravity wave speed
√
gH 350 ms−1

Alfvén wave speed vA 12 ms−1

Energy conservation

The single layer (indeed, the n-layer) system can be shown to conserve energy.
Equations (1-3) satisfy the conservation law
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(5)
The terms in the time derivative are the kinetic, gravitational potential, and
magnetic energies present in the system. The terms in the divergence comprise
the energy flux; both kinetic and potential energies are carried around with the
flow. The final term is the shallow water Poynting flux
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This describes the transport of magnetic energy. It differs from the 3-D MHD
Poynting vector in the factor 1/2, which arises due to the necessary absorption
of the magnetic pressure into the total pressure term in the derivation of (1).

Wave motion in the n-layer model

We perturb a motionless basic state with a horizontal magnetic field, which
can differ in each layer. Upon substitution of u = u′ and B = B0 + B′, the
linear analogue of the conservation law (5) can be found. We then substitute
the ansatz

u′ = ûei(k·x−ωt) (7)
and take the spatial and temporal average. The result indicates that ω is
real, implying that in a stably stratified system, a motionless basic state is
stable to infinitesimal disturbances. This allows us to look for small wave-like
disturbances without worrying about any lurking instabilities!
Equations (1-3) can be combined for each layer. After substituting according
to (7), we arrive at
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Using this equation, we can find dispersion relations, and equations describing
interesting properties of supported waves modes and their structure. The phase
speed is given by c, and vAj

is the Alfvén speed, given by

vAj
=
|B0j|√
µ0ρj

cos θj, (9)

where θj is the angle between the wavevector k and the ambient magnetic field.

The 3-layer model

Putting n = 3 in (8) and looking for non-trivial solutions yields the dispersion
relation
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where ζ2
j = c2 − v2

Aj
, αi,j is a non-dimensional reduced gravity, and βj is a

fractional layer depth. This relation is cubic in c2, indicating 3 pairs of distinct
wave modes supported in this system.

Illustrations of the modes in the 3-layer system. Red arrows represent horizontal fluid motion, and green arrows
depict 3-dimensional flow.

The schematic to the
left depicts the modes
present when the mag-
netic field is structured
in such a way that the
vAj

are equal in each
layer. In this case,
phase speeds increase

in a hyperbolic way with increasing Alfvén speed, with wave structure re-
maining unchanged.

Interesting properties of the 3-layer system
•For certain stratification settings, a wave mode becomes completely
independent of field strength.

•A strong field in the bottom layer can induce behaviour seen in the 2-layer
model.

•Wave modes appear to
‘swap’ behaviour when the
field is in the middle layer.

•The addition of a rigid lid
not only suppresses free
surface motion, but also
one of the modes. Further,
making the top layer thin
and strongly magnetised
induces a kind of elastic
behaviour on the surface.

Plots of the ‘behaviour swap’ in the 3-layer model when magnetic field is confined to the middle
layer. Each colour represents one of the 3 modes.
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