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Motivation: mean field models of
MHD turbulence

Can we extract mean coefficients governing long-wavelength
instabilities?

Method: Start with homogeneous stationary MHD turbulent state.
Perturb basic state with small imposed symmetry breaking terms

Calculate linearised response to perturbation and form mean
coefficients governing slow evolution of the mean quantities.

But is this a sensible way to proceed?
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Formal calculation of mean field coefticients

e Dynamic mean field theory for long-wavelength instabilities of full
MHD states.

e Important to note that when considering MHD states,
instability cannot be determined from the induction equation alone

Full coupled induction and momentum equations must be used

ou

S +U-VU = —~VP+B-VB+Re 'V°U+F (7)
86_]:+U.VB = B-VU+Rm 'V’B (8)

Rm /Re is the magnetic Prandtl number v /7. The (coupled)
equations describing small disturbances (denoted by b, u, p) are

2—?+U-Vu+u-VU ——Vp+B-Vb+b-VB+Re 'V?u (9)
%+U.Vb+u.VB:B-Vu+b-VU+Rm va® (10)
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Formal calculation of mean field coefticients

e As for the kinematic problem we separate the disturbance field and
flow into mean and fluctuating parts so that b = (b) + b’, etc.. The
equations for the mean parts are

Ou) + i (Ua" + u;U))

TR ~V{p) (11)

+£((ij’ + b/B)) + Re 'V (u),
]

% — Vx((Uxb +u xB)  (12)

+Rm~'V*(b),

o For the fluctuating parts we have (assuming (b), (u) uniform correct
to leading order)

(i; +(U-Vu' +u -VU) + (u)- VU = -V (13)
+(B-Vb' +b'-VB) +(b) - VB+ Re 'V’u’
ob +(U-Vb' +u'-VB) + (u)- VB = (14)

ot
(B-Vu' +b’-VU) +(b) - VU + Rm~'V°b'.
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Formal calculation of mean field coefticients

o Using the above the mean field equations can be written

& (u;) % B _9(p)
5 T ()—(qu<u1> + Ty(br)) = Ox. + Rm ™' V*(u;), (15)
0(b; 0 _
f%> = €k (cia(br) + o () + Re™ V7 (bi), (16)
]
__Rm=128, B, = 10"
® There are circumstances where this procedure o.06l

works and yields accurate results

e Example; instability of MHD state with 0.04
laminar flows depending only on (x,)) to long- | R B
wavelength three-dimensional disturbances i = '
(Courvoisier et al. 2011) 0.0 7 o
P
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Two major problems:

1. Hard to calculate, even numerically as signal noise ratio very small.

2. If equations have positive Lyapunov exponents then linearization
will not work as traj ectories diverge.
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But one might expect that a small symmetry-breaking term would lead
to a small change 1n mean quantities even with large excursions
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We consider a number of simpler problems to see if that
expectation 1s satisfied

® (Cubic Tent Map
® (ubic logistic map
® [ orenz Map

® Reduced dynamo-type ODE model with stochastic
variation
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Cubic Tent Map

f(x) defined in —1 <z <1

1.0""]"T'ITIIIIII
I:S\ : f(x) =3x

1 < x <
0.5 - _ g3 =7 =
! \ ! f(z) =—2—3x 1 <ax<—
0.0 i

i f(x) =ax 0<zx<

N 14+ a—2ax 1
-0.5 i p— — << 5 <
/(@) a—1 a

4ol vt N a = 3 gives the symmetric map (red).

1.0 0.5 0.0 0.5 10 Plot shows a = 5 (green)

Invariant measure for a = 5 shown in blue.

Dynamics of sequence {zg,x1,...} given by z,

1 — f(xn)

= QR WwWRk, o
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Cubic Tent Map

Invariant measure:

B 7GR
@) = 2 () | plords =1

u(x) piecewise constant, with p= s, x> 0;u=p_, x <O0.
r > 0 = z has three pre-images #;, where ; < 0 and 0 < Ts < a~ ! < 73 < 1.
r < 0 then z; » < 0 and x3 > a L.

Moduli of gradients in z < 0,0 < x < a_1,a_1 < x < 1 are 3,a,2a/(a — 1)
respectively. Then get two equations

1 N 1_|_a—1 2 _|_a—1 (1)
M+—3M— . 9 H+ M——SM— 9 ot
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o
W,

Cubic Tent Map

0.0

05 -

_1_ + 1+a_1. _.2 +.a_1 (7)
These two equations are both equivalent to 3(a—1)u. = 2au_, and applying
the normalisation condition p, + g = 1 we finally obtain
2a 3(a—1)
- _ = : 8
P T 5a—3 "7 ha—3 (8)

The average of x can now be calculated exactly as

0 1 —
(z) = p— /_lfcd:v+u-/0 zdz = ;(u+—u—)= 2(20, _03)- (9)
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Cubic Logistic Map
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This map into —2 < x < 2 has the form (for |ug| sufficiently small)

f(x) = po + 2.8¢ — z°
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Cubic Logistic Map
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*No clear relation between o and <x>

e Attribute failure to existence of dense set of
periodic windows - invariant measure highly
complex
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Lorenz Map

l
05 - P :
_ 1 This map has no
/4 : :
: 7~ | stable periodic
T 7 7 | orbits so may yield
v V4 1 more sensible
A/ —_
hal! results
| I
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f(z) = posgn(x)(—1 + 1.5+/|z|)
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Lorenz Map
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ODE model

Simple 3D ODE model with stochastic forcing, modelled on cut-down dynamo
equations of Kennett (1975)

rg = —vxg + F(t); F(t) = white noise in [—1, 1]
:13'1 = O'(—ilil +Trxo — 5825173)
To = —MT2 + 2123

T3 = —1oX3 + T1T2+ oL

When pg = 0 there is a symmetry
X1 —+ 1, X9 — —T2, 3 —> —I3 [“B — —B”]

Symmetry is broken when g # 0

Choose v =1,0 =1, r = 2, ny = .001 and n; = .001 or .002
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ODE model

erunning averages of >10° iterations for x;,x2,x3
esolutions take a long time to converge so error bars significant
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ODE model

X v Ho
0.2
200
| 1 ] ] | | ] 1 1 | L 1 o1 | L | | L1 ' |
0.05 0.10 0.15 0.01 0.1 1.0
n = .001 n = .002

In the first case (which has singular behaviour when

Wo=0 ) there 1s no linear behaviour, while in the second
case there 1s a clear linear range of response.
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Conclusions

® In looking at small symmetry-breaking perturbations to
chaotic flows, the nature of the response depends on the
structure of the underlying attractor.

® (an speculate that with smooth invariant measures on the
attractor there may be some hope of finidng a linear
response.

® However there 1s still the problem of the signal/noise ratio.

® The 1dea of using linearised equations to find the mean
induced response must be abandoned for non-laminar basic
states.

® Next steps: Extensive calculation of forced MHD
turbulence and effects of small imposed fields.
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