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Geometric view of GLM and glm
Separation between mean flow and ‘waves”:
» simple mean dynamics,
» simple closure for the waves,
> interpretation of the mean flow, e.g. track particle motion.

Larangian averaging: Andrews & McIntyre’s GLM,

x=X(a)+£(X(a), #(X) =u(X+£(X)),
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Geometric view of GLM and glm
Separation between mean flow and ‘waves”:
» simple mean dynamics,
» simple closure for the waves,
> interpretation of the mean flow, e.g. track particle motion.

Larangian averaging: Andrews & McIntyre’s GLM,
x=X(a) +&(X(a), #(X)=u(X+£(X)),

GLM is coordinate dependent:
» cannot add points, cannot add vectors at different points,
» xeMbutX ¢ M;V-u=0butV- i #0.

Take a geometric approach:
» avoid temptation of coordinate dependence;

» results valid on arbitrary manifolds.
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Geometric view of GLM and glm

Kinematics: ensemble of flow maps ¢ = ¢~ : M — M.
Decompose flow maps into mean and perturbation

p=E0¢.
Taking the time derivative

foe V4 6i" =u, where ii" = pod !

&« is the push-forward: (Eau)i(x) = (6j§iuf)(§*1x).
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Geometric view of GLM and glm

Kinematics: ensemble of flow maps ¢ = ¢~ : M — M.
Decompose flow maps into mean and perturbation

p=E0g.
Taking the time derivative
foe V4 6i" =u, where ii" = pod !
¢, is the push-forward: (&u)(x) = (@{iuf)({*lx).
Need a constraint on ¢ to define ¢:
» GLM (Andrews & McIntyre): £ = 0, not geometric,
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Geometric view of GLM and glm

Kinematics: ensemble of flow maps ¢ = ¢~ : M — M.
Decompose flow maps into mean and perturbation

p=E0g.
Taking the time derivative
foe V4 6i" =u, where ii" = pod !
¢, is the push-forward: (&u)(x) = (6]-§iuf)(§*1x).
Need a constraint on ¢ to define ¢:
» GLM (Andrews & McIntyre): £ = 0, not geometric,

» glm (Soward & Roberts): & = e” for a vector field n with
n7=0and V -,
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Geometric view of GLM and glm

Kinematics: ensemble of flow maps ¢ = ¢~ : M — M.
Decompose flow maps into mean and perturbation

p=E0g.
Taking the time derivative
foe V4 6i" =u, where ii" = pod !
¢, is the push-forward: (&u)(x) = (6]-§iuf)(§*1x).
Need a constraint on ¢ to define ¢:
» GLM (Andrews & McIntyre): £ = 0, not geometric,

» glm (Soward & Roberts): & = e” for a vector field n with
n7=0and V -,

» alternative: £*¢ =0, where ¢* is the pull-back.



GEOMETRIC GLM NEAR-INTERIAL WAVES COUPLED MODEL CONCLUSION

[e]e] le] 0000 0000 o
:

Geometric view of GLM and glm
Dynamics: 3D Euler, in terms of the velocity one-form v = u, ,
dual to u (wrt a metric),

d * _ *
a(¢ v) = —d(¢"m).

Kelvin’s circulation theorem follows:

j{ v= ¢ ¢"v = const.
¢Co Co

Averaging leads to a mean-circulation theorem

j{ v=¢ 5*0:% 0" = const.
£(¢Co) ¢Co #Co

The circulation of the Lagrangian-mean one-form ©" = £*v
along contours moving with velocity it" is conserved:

ov + Lyv=—dm, ie.,

V" + L0 = —d(---).
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Geometric view of GLM and glm

Wave-mean flow interaction = relation between 1" and 7".

Pseudomomentum: p =" — (i), .
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Geometric view of GLM and glm

Wave-mean flow interaction = relation between i1 and 7".

Pseudomomentum: p =" — (i), .
Simple relation if ii" = £*u so that p = &*u, — (£¥u),:
» GLM: i1"(x) = u(x + £(x)) is a coordinate dependent
version,
» glm: " # &*u,
» alternative: ii" = £*u, but mean drifts from ensemble (for
u = O(e), € grows secularly).
Soward & Robert’s glm appears to be a good compromise.

In practice, need to use coordinates and work pertubatively:
u = u + eu’ and use Lie-series (cf classical averaging).
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Near-inertial waves

Inertia-gravity waves: fast waves with dispersion relation
w=+(f2+ N22/m?)V/? or w==4f(1+r3k?)1/?
with rq radius of deformation (= NH/(nfn)).

Oceanic inertia-gravity waves important for:
» vertical motion = biology,
» vertical shear, instability, turbulence = diapycnal mixing,
» mixing = pollutant dispersion,

» large-scale ocean circulation, through diapycnal mixing
(Munk & Wunsch 2009) and dissipation (Gertz & Straub
2009).

Sources: tides, topography, winds. ..
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Near-inertial waves
Inertia-gravity-wave spectrum is dominated by lowest
frequencies: near-inertial waves, NIWs:
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Near-inertial waves

About 50% of wave energy in NIWs:

» generated by winds (low frequency)
affecting the mixed layer (k/m < 1),

> f lowest frequency available for
resonant interactions,

» subharmonic instability of M, tide.

Alford 2003

‘Despite their ubiquity, energy, and many years of study,
much about the behavior of inertial waves remains obscure.”
(Ferrari & Wunsch 2009)
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Near-inertial waves
Main issues:

» NIW propagation into ocean interior (weak dispersion),

v

role of mean flow in this propagation,

v

generation of small vertical scales,

v

impact of NIWs on mean flow.
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Near-inertial waves
Main issues:

» NIW propagation into ocean interior (weak dispersion),

v

role of mean flow in this propagation,

v

generation of small vertical scales,

v

impact of NIWs on mean flow.

Main theoretical tools: linear wave dynamics,

» WKB approximation (Kunze 1985): takes kLo, > 1,
but kLgow <1,

» Young-Ben Jelloul model (1997): assumes w ~ f,
kLgow = O(1) to describe slow modulation of NIWs.
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Near-inertial waves
Main issues:

» NIW propagation into ocean interior (weak dispersion),

v

role of mean flow in this propagation,

v

generation of small vertical scales,

v

impact of NIWs on mean flow.

Main theoretical tools: linear wave dynamics,

» WKB approximation (Kunze 1985): takes kLo, > 1,
but kLgow <1,

» Young-Ben Jelloul model (1997): assumes w ~ f,
kLgow = O(1) to describe slow modulation of NIWs.

Derivation of a wave-mean flow model,
coupling the Young-Ben Jelloul and quasigeostrophic models.
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Coupled model

Impact of NIWs on mean flow:
» non-dissipative framework,
» time-scale separation U/(fL) < 1 provides a natural
averaging,
» slow modulation of NIW amplitude and mean flow on the
same time scale,
» no spatial scale separation,

» averaged model that respects dynamical constraints
(momentum, energy conservation, circulation...).
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Coupled model

Impact of NIWs on mean flow:
» non-dissipative framework,
» time-scale separation U/(fL) < 1 provides a natural
averaging,
» slow modulation of NIW amplitude and mean flow on the
same time scale,
» no spatial scale separation,

» averaged model that respects dynamical constraints
(momentum, energy conservation, circulation...).

Recipe: combine glm (Soward & Roberts 2010), Salmon’s
variational GLM (2013), and Whitham averaging.
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Coupled model

Start with hydrostatic Boussineq Lagrangian

L[x,p] :/(i (# +3?) — <fy+52y2>5c+bz+p(gz—1>> da

and introduce x(a,t) = X(a,t) + £(X(a, t),t).
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Coupled model

Start with hydrostatic Boussineq Lagrangian

L[x,p] :/(i (# +3?) — <fy+52y2>5c+bz+p(gz—1>> da

and introduce x(a,t) = X(a,t) + £(X(a, t),t).

To leading order, £ describes NIWs:

W =™ =0, 9™ 40 =0, &+ + =0,
Solve in terms of the NIW amplitude: M(x,y, z, t), with

W 4in® = Me ™, ¢ = —2(0y — j(‘)y)Me*ift + c.c..

Whitham average, using @ = %5 OF VE @ (glm) to obtain

LIX,M, D).
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Coupled model
Variations M give the YBJ equation (for 5 = 0),

(DiMz): + 2} (V2PM,, + P.,V2M — 2VP, - VM) = 0.
Variations §X ! give Lagrangian-averaged primitive equations,
with V3 - #t" = 0.
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Coupled model

Variations M give the YBJ equation (for 5 = 0),
i

(DM + 5 7 (V2PM.; + P,,V*M — 2VP, - VM) = 0.
Variations §X ! give Lagrangian-averaged primitive equations,
with V3 - #t" = 0.

Assuming quasigeostrophic mean flow,
it = (V1ty,0) =f1(VLP,0),
we obtain the coupled YBJ/QG model

(DiMy): + § (V2UMez + (3 +14) VEM = 2945, - VM; ) =0,
0 +0(,q) =0, with (V2+0,(f0.)) v =q+FM M),

F(M*, M) = Lo(Mz, M,) + £ (2] VM, |2 — M. V2M* — M2, V2M).
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Coupled model

The model is Hamiltonian, conserves action and energy:

A= / IM.|*dx = NIW kinetic energy,
=3[ (IVoP + & (0:)? + FIVMP) dx
= QG energy + NIW potential energy

» evolution governed by PV g and NIW amplitude M,
» advecting velocity V- depends on both g and M,
> energy H is simple in terms of 1, complicated in terms of 4.
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Coupled model

The model is Hamiltonian, conserves action and energy:

A= / IM.|*dx = NIW kinetic energy,

=1 [ (IV9P + (@9 + EIVMP) dx
= QG energy + NIW potential energy

» evolution governed by PV g and NIW amplitude M,

» advecting velocity V- depends on both g and M,

> energy H is simple in terms of 1, complicated in terms of 4.
Physical implications:

» A = const: no spontaneous NIW generation,

» H = const: mean-flow energy decays as | VM| increases.
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Conclusion

Lagrangian mean theories
» think geometrically, avoid coordinate-dependent objects,
» compact notation, unpack only when needed,

» advantages of glm for incompressible fluids.

Near-inertial waves
» use glm in Lagrangian to derive a coupled YBJ-QG model,

» a Hamiltonian subgrid scale model (cf. Gjaja & Holm
1996),

» formulation well suited for numerical integration,

> energy transfer mean flow — NIWs: significant in the
ocean?

» shallow-water version.
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