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The complete theory of 
wave-mean interactions, abridged

U(t) :
∂U

∂t
+ L(U) + B(U,U) = 0

∂U

∂t
+ L(U) + B(U,U) = −B(U �, U �)

Abstract evolution equation

Averaging operator, defines mean and disturbance (eddy) fields 

Evolution of mean field is coupled to eddy field; turbulence closure problem

But for small-amplitude waves this term 
can be evaluated from linear theory!

U = U + U � : αU + βV = αU + βV and U � = 0
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Small-amplitude waves, aka 
linear or quasi-linear eddies

102 Zonally symmetric wave–mean interaction theory

Lagrangian-mean theory, which allows us to extend the previous results to
finite-amplitude waves. As we shall see, this theory will be of great utility
once the assumption of zonal symmetry has been dropped.

5.1 Basic assumptions

The classic wave–mean interaction theory is based on a combination of three
simplifying assumptions:

1. small-amplitude waves,

2. simple geometry (in a sense to be defined) and

3. zonal averaging linked to the simple geometry.

We will look at the consequence of these assumptions in turn.

5.1.1 Small-amplitude wave–mean interactions

To understand the structure of wave–mean interaction theory for small-
amplitude waves it is useful to write the governing equations in the abstract
form

∂U

∂t
+ L(U) + B(U,U) = 0, (5.1)

where U(x, t) is a vector representing the flow variables, L is a linear oper-
ator, and B is a bilinear operator that captures, say, the essential quadratic
nonlinearity of fluid dynamics due to the advective derivative. Of course,
additional nonlinearities due to boundary conditions or nonlinear equations
of state can be added to (5.1) as needed. A perturbation expansion of U in
terms of a small parameter a ! 1 measuring the wave amplitude is

U = U0 + aU1 + a2U2 + · · · (5.2)

and substitution of (5.2) in (5.1) then yields a regular perturbation hierar-
chy of quasi-linear equations to be solved at ascending powers O(an). This
standard method converts a nonlinear problem into a hierarchy of linear
problems. At lowest order this yields the equation for the O(1) basic flow

O(1) :
∂U0

∂t
+ L(U0) + B(U0, U0) = 0. (5.3)

The next order yields the equation

O(a) :
∂U1

∂t
+ L(U1) + B(U0, U1) + B(U1, U0) = 0 (5.4)
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for the O(a) linear waves. This is the realm of linear theory as studied before
in Part I. At the next order the back-reaction onto the basic flow enters:

O(a2) :
∂U2

∂t
+ L(U2) + B(U0, U2) + B(U2, U0) = −B(U1, U1). (5.5)

Crucially, the forcing term on the right-hand side is already known at this
stage from the solution of the O(a) problem (5.4).

The basic task of small-amplitude wave–mean interaction theory is to com-
pute the leading-order flow response U2 and it is now clear that this merely
requires solving two linear problems in sequence, namely (5.4) first and then
(5.5). Moreover, these linear problems share the same linear operator on the
left-hand side, which is

∂(·)
∂t

+ L(·) + B(U0, ·) + B(·, U0). (5.6)

Thus the O(a2) flow response to the waves itself behaves like a forced lin-
ear wave. This indicates that the strongest wave–mean interactions will be
associated with resonances between the wave-induced forcing terms and the
modes of this linear operator. We can makes this more definite by distin-
guishing between weak and strong interactions, as follows.
A weak interaction leads to an O(a2) mean-flow response that is bounded

uniformly in time. Because a " 1, this suggests that the O(a2) mean-flow
response may be quite small in this case, and perhaps even negligible. A
strong interaction, on the other hand, does not have a uniform bound and
in this case the mean-flow response typically grows secularly in time such
that U2 = O(a2t). This means that over long, amplitude-dependent times
t = O(a−2) the mean-flow response can grow to O(1) and thus change
significantly the basic flow on which the waves propagate.
Now, as noted before, the O(a2) equation (5.5) is a forced linear equation

and therefore strong interactions can be related to resonant forcing. For
example, consider a simple case with zero basic flow, i.e., U0 = 0. This
means we have the abstract equation

(
∂

∂t
+ L

)
U2 = R (5.7)

for the response U2 in terms of the forcing terms R = −B(U1, U1), say. We
can assume that L is skew-symmetric, i.e., its spectrum consists of imaginary
numbers, which correspond to neutrally stable waves. The solution for U2 is
formally given by the Duhamel formula

U2(t) = exp(−tL)U2(0) +

∫ t

0
exp(−(t− s)L)R(s) ds (5.8)

a � 1

U �
0 = 0 U1 = 0

Basic flow assumed known

Linear waves
O(a) :

∂U �
1

∂t
+ L(U �

1) + B(U0, U
�
1) + B(U �

1, U0) = 0

Nonlinear mean-flow response

O(a2) :
∂U2

∂t
+ L(U2) + B(U0, U2) + B(U2, U0) = −B(U �

1, U
�
1)

Key linear operator: Resonant forcing may lead to unbounded mean-flow 
growth as O(a^2 t)

Such strong interactions can break the perturbation 
expansion and lead to the most interesting dynamics!

Small wave amplitude
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Strong interactions caused 
by Stationary Waves 

Stationary waves often relevant in practice

Strong interactions naturally associated with 
steady,   zero-frequency modes of 

the key linear operator

∂

∂t

�
B(U �

1, U
�
1)
�
≈ 0

So, which part of the linear flow dynamics is slow?

O(a2) :
∂U2

∂t
+ L(U2) + B(U0, U2) + B(U2, U0) = −B(U �

1, U
�
1)

projects onto steady modes!
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Classical answer:
Zonal averaging and jets

Spatially periodic flow in x (longitude, azimuthal angle in tokamak)

Zonal averaging in x 
induces zonal mean-
flow symmetry

Unforced linear zonal mean flow equation
Fast pressure force has dropped out!

Makes obvious the 
importance of zonal jets for strong 

wave-mean interactions

U(x+ L) = U(x)

∂U

∂x
= 0

∂u

∂t
= 0

Zonal jets exhibit 
slow linear 
dynamics

∂p

∂x
= 0
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Another answer:
Slow vortex dynamics

D∇× u

Dt
+ (∇× u)∇ ·u = (∇× u ·∇)u

Du

Dt
+

∇p

ρ
= 0, ρ = f(p)Euler equations for compressible barotropic flow

Vorticity  equation

Fast pressure force has dropped out!

Unforced linear vorticity equation with zero basic flow

The vortical mode is also a natural candidate for a 
strong mean-flow response

No spatial symmetry needed (eg time-averaging ok)

∂∇× u

∂t
= 0
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Waves and vortices

a packet of sound 
waves dissipates and 
creates a vortex ring

vorticity is created from 
nothing via the laminar 
dissipation of irrotational 
sound waves!

Wave-dissipation creates
vorticity
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Lighthill on Waves
Yellow marker for page 347: “steady streaming generated by wave attenuation”
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Micro-mixing in a drop 
induced by sound waves

Proc. R. Soc. A (2011) 467, 1779–1800
doi:10.1098/rspa.2010.0457

Published online 8 December 2010

Streaming by leaky surface acoustic waves
BY J. VANNESTE1,* AND O. BÜHLER2

1School of Mathematics and Maxwell Institute for Mathematical Sciences
University of Edinburgh, Edinburgh EH9 3JZ, UK

2Courant Institute of Mathematical Sciences, New York University,
New York, NY 10012, USA

Acoustic streaming, the generation of mean flow by dissipating acoustic waves, provides
a promising method for flow pumping in microfluidic devices. In recent years, several
groups have been experimenting with acoustic streaming induced by leaky surface waves:
(Rayleigh) surface waves excited in a piezoelectric solid interact with a small volume of
fluid where they generate acoustic waves and, as result of the viscous dissipation of these
waves, a mean flow. We discuss the computation of the corresponding Lagrangian mean
flow, which controls the trajectories of fluid particles and hence the mixing properties
of the flows generated by this method. The problem is formulated using the averaged
vorticity equation which extracts the dominant balance between wave dissipation and
mean-flow dissipation. Particular attention is paid to the thin boundary layer that forms
at the solid/liquid interface, where the flow is best computed using matched asymptotics.
This leads to an explicit expression for a slip velocity, which includes the effect of the
oscillations of the boundary. The Lagrangian mean flow is naturally separated into three
contributions: an interior-driven Eulerian mean flow, a boundary-driven Eulerian mean
flow and the Stokes drift. A scale analysis indicates that the latter two contributions
can be neglected in devices much larger than the acoustic wavelength but need to be
taken into account in smaller devices. A simple two-dimensional model of mean flow
generation by surface acoustic waves is discussed as an illustration.

Keywords: acoustic streaming; micromixing; wave–mean flow interactions

1. Introduction

The numerous applications of microfluidic technology, in biology and chemistry in
particular, have stimulated a great deal of research about the physics of fluids at
small scales (e.g. Nguyen &Wereley 2002; Squires & Quake 2005 or Tabeling 2006
for an introduction). Many microfluidic devices require to mix reacting solutions
efficiently. As is well-recognized, this poses a challenge because the small values
of the diffusivity of most chemicals make molecular diffusion impractically slow,
while the low Reynolds numbers in typical devices preclude turbulent mixing.
Much effort has therefore been devoted to the design of efficient micromixers,
which typically rely on the formation of small-scale structures in the concentration
fields to enhance the effect of molecular diffusion.
*Author for correspondence (j.vanneste@ed.ac.uk).

Received 31 August 2010
Accepted 8 November 2010 This journal is © 2010 The Royal Society1779

★ interested in mixing the drop using high frequency sound waves, a multi-dimensional version of acoustic streaming

★ acoustic streaming depends on presence of viscosity but is independent of its value; a textbook singular perturbation problem 
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MODEL BASED ON LEAKY WAVES
Streaming by surface acoustic waves 1789

fluid

solid

x

y

Figure 1. Configuration of the interacting fluid and solid considered in §§5 and 6. The surface
acoustic waves in the solid are forced at the location indicated by the arrow.

where a and b are the longitudinal and transverse wave speeds of the solid. These
are given in terms of the Lamé parameters ls and ms and density rs of the solid
by a =

√
(ls + 2ms)/rs and b= √

ms/rs. Here and in what follows, variables with
the superscript s characterize the solid, while those with no superscripts continue
to characterize the fluid.
We emphasize the difference between the spatial coordinates used to describe

the motion in the fluid and in the solid: equations (2.1) and (2.2) for the fluid
are written in Eulerian representation, with x representing fixed positions in
space; in contrast, equations (5.2) are written in Lagrangian representation, with
x labelling particles by means of their position in the undeformed solid. The
distinction is crucial for the boundary conditions matching the motion in the
fluid to that in the solid.

(b)Boundary conditions

The wall bounding the liquid to the left is assumed rigid and fixed. Thus, we
impose the condition

u = 0 for x = 0, y > 0 (5.3)

on the fluid velocity. At the interface between the solid and air (treated as
vacuum), the tangential and normal components of the stress tensor, which satisfy

vtT s = ms(vyus + vxv
s) and vtN s = ls(vxus + vyv

s)+ 2msvyvs, (5.4)

vanish: T s =N s = 0 for x > 0, y = 0.
To write down the boundary conditions at the fluid–solid interface, we use

the fluid displacements x(x , t) whose exact definition, vtx + u · Vx = u, can be
approximated by the linearization vtx1 = u1 already used in §3. The continuity of
the velocity field between fluid and solid is then written as

u(x ′, t)= us(x , t) for x > 0, y = 0, (5.5)

Proc. R. Soc. A (2011)
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Figure 2. Wave field in the solid and fluid: the real part of the vertical velocity, Re v̂, is displayed
in a small domain around (x , y)= (0, 0). Distances are in millimetre. (Online version in colour.)

Table 1. Parameters used for the numerical application.

fluid (water)
density r 103 kgm−3

sound speed c 1.5× 103 m s−1
shear viscosity m 10−3 kgm−1 s−1

bulk viscosity mb 2.5× 10−3 kgm−1 s−1

solid
density rs 4.65× 103 kgm−3

longitudinal wave speed a 8× 103 m s−1
transverse wave speed b 4.64× 103 m s−1

forcing
angular frequency u 9.425× 108 s−1

operators that are best expressed using Fourier transforms in the x-direction.
Using these, the problem can be reduced to one-dimensional pseudodifferential
equations for f̂(x , 0), f̂s(x , 0) and ĵs(x , 0) which we solve using a pseudospectral
discretization (e.g. Trefethen 2000). Details about the numerical procedure are
given in appendix B.
We show in figure 2 the wave field in both the solid and the fluid. The figure

displays only a small portion of the computational domain: the full computational
domain is 5mm long in the x-direction, with the forcing located around x =
−1.25mm (since we solve a one-dimensional problem, a grid in the y-direction
is only needed for visualization). The scattering appears relatively simple and
dominated by the LSAWs, although other types of modes are no doubt excited
(see Craster 1996 for an analogous problem). The exponential decay of the LSAWs
as x increases from zero is clearly visible, but the viscous damping of the acoustic
waves is not because the damping length is much larger than the domain plotted.

Proc. R. Soc. A (2011)

Waves in drop are 
excited  by incoming 

surface wave from the 
left, generated by piezo-

crystal.

air

Dissipating waves drive vortical 
mean flow, which saturates 

against viscous diffusion.
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EULERIAN MEAN FLOW

Time-averaged mean flow 
Find balance between wave 
driving and viscous 
dissipation at second order 
in wave amplitude

1786 J. Vanneste and O. Bühler

using again that V × u1 = 0. This is the form obtained by Eckart (1948) and
Westervelt (1953). A convenient alternative to equation (4.4) is obtained using
that u1 satisfies a wave equation up to O(d2) terms and reads

V2V × ūE = −n + n′

n

u2

r0c2
V × r1u1 +O(d2). (4.5)

This form, in which the mean-flow forcing is directly related to the acoustic energy
flux c2r1u1, makes clear that ūE depends on the viscosities only through their
ratio n′/n (or equivalently mb/m).
In what follows, we use equations (4.2) and (4.5) to compute the Eulerian

mean flow ūE generated by LSAWs. We expect this formulation to be better
conditioned than the solution of the averaged momentum equation: in the latter,
the averaged wave stresses are balanced at O(1) by pressure gradients while much
smaller, O(d2) terms involving viscous effects determine the Eulerian mean flow.
The boundary conditions for equation (4.5) are found next by considering the
boundary layers.

(b)Boundary layers

Near the boundaries, the full O(a) velocity field of the form (3.9) needs to
be taken into account. In the case of a solid boundary at z = 0, the averaged
x- and y-momentum equations should be solved to obtain the mean tangential
velocity in the boundary layer and, by taking its limit as the boundary-layer
coordinate Z→ ∞, the slip velocity that serves as boundary condition for the
interior equation (4.5). Let us consider the x-momentum equation, which reads

r0V · (u1u1)= −vx p̄2 + mv2zz ū
E +O(d),

when only the dominant viscous term is retained. Now, the contribution to the
left-hand side of this equation that is associated with the potential part of u1 is
balanced by the pressure gradient up to O(d2) (as it is in the interior). Subtracting
this part leads to

nv2zz ū
E = V · (u1u1)− V · (vxf1Vf1)+O(d). (4.6)

The boundary condition for this equation is obtained by averaging the no-slip
condition on the (possibly moving) boundary and is

ūL = ūE + x1 · Vu1 = 0 at z = 0. (4.7)

It is, therefore, convenient to solve, rather than equation (4.6), the equivalent
equation for the Lagrangian mean flow, namely

nv2zz ū
L = V · (u1u1)− V · (vxf1Vf1)+ nv2zz(x1 · Vu1)+O(d). (4.8)

Proc. R. Soc. A (2011)

linear wave field
B(u’,u’)

wave dissipation

mean flow 
dissipation 

Only the dissipation ratio enters the equation for the steady mean flow!
Hence steady mean flow depends on presence of viscosity, but not its value.

u = uE + u�

mean vorticity budget

u� = O(a), uE = O(a2), a� 1.
Streaming by surface acoustic waves 1793
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Figure 4. (a) Streamfunction j̄Ei of the interior-driven Eulerian mean flow. Contour labels have
units mm2 s−1. (b) Streamfunction j̄S + j̄Eb combining the Stokes drift and boundary-driven
Eulerian mean flow. Contour labels have units 10−3 mm2 s−1.

(b)Mean flows

We now consider the mean flows forced by the acoustic waves in the fluid. Since
they are approximately non-divergent, the Stokes drift and Eulerian mean flows
can be written in terms of streamfunctions j̄S, j̄Ei and j̄Eb , with

ūS = V⊥j̄S, ūEi = V⊥j̄Ei and ūEb = V⊥j̄Eb ,

where V⊥ = (−vy , vx). The equations satisfied by jS, j̄Ei and j̄Eb are readily
obtained from equations (2.8), (4.5), (4.13) and (4.14). We have solved these
equations using a finite-difference discretization of the bi-Laplacian that needs
to be inverted to find j̄Ei and j̄Eb . The results depend strongly on the extent
of the fluid domain in the y-direction. With the realistic values of the shear
and bulk viscosities that we employ, the amplitude of the wave beam decreases
over distances that are large compared with the typical size of experimental
devices (the decay scale is estimated from equation (3.5) as g−1 ≈ 2mm). As
a result, treating the fluid domain as infinite in the y-direction would lead to an
unrealistically strong Eulerian mean flow. We have therefore chosen to consider
a bounded domain of size 1mm in the y-direction. As we use the wave field
computed in a semi-infinite domain, we neglect the reflected beam that appears
on the upper boundary and whose amplitude is about 1/2 that of the main wave
beam. The structure of the mean flow and its magnitude are not expected to
be modified in an essential way by the reflected beam. In the x-direction, we
continue to consider the domain as semi-infinite: the numerical computation
requires to take a finite size, here 2.5mm, but this has only little impact on
the results.
Figure 4a shows the streamfunction j̄Ei of the interior-driven Eulerian flow.

The structure is similar to that observed in experiments and previous numerical
models: a strong clockwise vortex is established to the right of the acoustic wave

Proc. R. Soc. A (2011)

1792 J. Vanneste and O. Bühler

(a)

0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.6

0.8

1.0
(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

−60

−40

−20

0

20

40

60

Figure 3. Wave amplitude in the fluid. (a) The potential |f̂| is shown for (x , y) ∈ [0, 1] × [0, 1]mm.
(b) Normal velocity of the interface (in millimetre per second) as a function of distance x (in
millimetre); the numerical result (solid line) is compared with the form predicted for a pure LSAW
(dashed line). (Online version in colour.)

As discussed above, the solution satisfies the continuity of the normal velocity
between the fluid and solid, but not the continuity of the tangential velocity.
The thickness of the boundary layer that forms to ensure the continuity of
the tangential velocity is computed from equation (3.4) and found to be
d = 46 nm. With a wavenumber in the fluid given by k = u/c = 6.3× 105 m−1,
the dimensionless parameter estimating both the validity of the boundary-
layer approach and the importance of interior dissipation is dk = 3× 10−2. We
emphasize that the use of the analytic form of the solution in the boundary layer
avoids the need for the exceedingly high resolution that would be needed for a
fully resolved numerical computation.
Figure 3 displays the amplitude |f̂| of the acoustic wave field in the fluid

and provides a more detailed picture of the wave beam that is generated by
the LSAW. The beam emanates from the corner (x , y)= (0, 0), at an angle q
from the horizontal that can be computed from Snell’s Law cos q = c/cLSAW
as q ≈ 70◦. The figure shows a rather complicated interference pattern in the
beam which results from the reflection on the rigid wall at x = 0. In spite of
the scattering in the solid and of the reflection in the liquid, the form of the
waves on the interface y = 0 is simple and well-described by a pure LSAW. To
illustrate this, we compare in figure 3 the normal velocity Rev̂(x , 0)=Rev̂s(x , 0)
with that predicted for a LSAW with complex wavenumber (6.2). The amplitude
and phase of the LSAW have been fitted to match the numerical result. The
agreement is excellent. Since the problem is linear, the amplitude of the interface
displacements, of the order of 0.1 nm, is directly proportional to the strength of
the forcing which we have chosen somewhat arbitrarily. We comment below on
the magnitude of these displacements in connection with the amplitude of the
mean flow generation.

Proc. R. Soc. A (2011)

waves drive vortex roll
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Mutatis mutandis, 
streaming concepts can be applied to 

nonlinearly breaking waves

Breaking of obliquely 
incident surface waves 
drives vortical motions 
in the surf zone

Example: longshore 
currents and rip currents

Classical theory by 
Longuet-Higgins 1970

Non-trivial longshore 
current structure on 
barred beaches 
(Buhler & Jacobson 2001)
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Du

Dt
+ g∇h = F

q =
∇× u

h
such that

Dq

Dt
=

∇× F

h

Simplest model: shallow water equations

x = (x, y) u = (u, v)

depth h

Dh

Dt
+ h∇ · u = 0

h

Single layer of hydrostatic 
incompressible fluid

(Topography ignored for simplicity)

D
Dt

=
∂

∂t
+ (u · ∇)

Potential vorticity

PV can be changed by the curl of a mean force F due to 
dissipating or breaking waves!             
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Key fact: non-uniform wave breaking  creates vortex 
dipoles, as in acoustic streaming

Wavepacket Vortex dipole

dissipation

Important for wave-mean interactions 
e.g. Bühler 2000, Bühler & McIntyre, 2003, 2005

Role of wave-driven vortices in the surf zone?
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Numerical example: breaking 
shallow water waves

time = O(100)

Waves are generated, 
refracted by decreasing 

water depth, finally 
decay due to shock 

formation and 
dissipative wave 

breaking

Water depth decreases

Shoreline 

Ocean
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Potential vorticity - 
mind the rip current!

pv = ∇× u/h

time = O(1000)
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No special theory was needed

∇× u� = 0

This was because the waves were irrotational...

..don’t need to look far for this to fail.  Deeper...
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Internal gravity waves

x

z

undulating material 
stratification surfaces 
(isentropes/isopycnals)
surfaces are flat at rest

linear particle trajectories

Momentum flux u�w� < 0 (unlike surface waves)

scale-free dispersion relation

ω̂2 = (N2 − f2)
k2

k2 + m2
+ f2

w′ ∝ exp(i[kx + mz − ω̂t])
f2 ≤ ω̂2 ≤ N2

Waves contribute to vertical angular-
momentum transport.

Breaking waves contribute to turbulent 
vertical diffusion.  

∇× u �= 0, q =
∇× u · ∇θ

ρ
= 0
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Narrow regions of cold downwelling (plumes) and 
wider regions of warm upwelling (diffusion)

Small-scale internal gravity waves are believed to play a significant role here: 
wave-breaking lubricates the ocean circulation

A substantial fraction of oceanic internal wave energy is of heavenly origin....

Dissipating internal waves lubricate the ocean 
circulation

Brazil basin
 data
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Microstructure 
measurements

58
Oceanography • Vol. 17 • No. 1/2004
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Figure 4. Turbulent diapycnal eddy
diffusivity K in the Brazil Basin
shows weak mixing (less than 0.1 x
10-5 m2 s-1) over the smooth topogra-
phy to the west and bottom-elevated
mixing (K > 10 x 10 -5 m2 s-1) over the
rougher topography of the Mid-
Atlantic Ridge to the east (adapted
from Mauritzen et al. 2002). 
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Figure 5. Measurements of sea-surface elevation from satellite altimetry have led to direct estimates of the loss of energy from
the surface tide. Until recently, this loss was thought to occur principly in shallow waters. Satellite altimetry and numerical
simulations have revealed that up to a third happens in the deep ocean, the surface tide losing energy to the generation of inter-
nal tides and local turbulence with the former sink thought to dominate. Surface lunar semidiurnal (M2) tidal dissipation
inferred from a least-squares fit of satellite altimetry data to the barotropic tide equations are shown (from Egbert and Ray,
2001). Large dissipations or sinks to the surface tide (red) are collocated with regions of steep topography such as the Hawaiian
Ridge and the Micronesian Archipelago. Large internal tides have been observed radiating from these same topographic fea-
tures, generated by tide/topography interactions.

Polzin et al. 1997
The plot that launched a 1000 ships

Smoking gun: 
internal waves 

generated by the 
lunar tide

Internal tides
Want to study those

Clear evidence of enhanced 
turbulence above rough 
topography

Points clearly to importance 
of both internal waves and 
of topography
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Lunar recession and 
Energy dissipation

dr

dt
= 3.8

cm
year

r(t)

About 2 TW of that manifests itself as 
small-scale turbulent dissipation in the ocean
Part of it is found in internal tides and their 

interaction with topography

⇒ dE

dt
= −3.2 ∗ 1012 Watts = −3.2 TW

Moon gains angular momentum and orbital energy
Earth loses both, plus extra energy dissipation
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Internal tides 
spreading 

through the 
ocean
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Simmons, Hallberg, Arbic 2004 
simple two-layer model

Related work with 
Miranda Holmes-Cerfon:

How long can the internal tide survive 
in real ocean?

Under consideration for publication in J. Fluid Mech. 1

Decay of an internal tide due to random
topography in the ocean

By OLIVER BÜHLER †
AND MIRANDA HOLMES–CERFON ‡

Center for Atmosphere Ocean Science at the Courant Institute of Mathematical Sciences
New York University, New York, NY 10012, USA

(Received 5 February 2011)

We present a theoretical and numerical study of the decay of an internal wave caused
by scattering at undulating sea-floor topography, with an eye towards building a simple
model in which the decay of internal tides in the ocean can be estimated. As is well
known, the interactions of internal waves with irregular boundary shapes lead to a math-
ematically ill-posed problem, so care needs to be taken to extract meaningful information
from this problem. Here, we restrict the problem to two spatial dimensions and build a
numerical tool that combines a real-space computation based on the characteristics of
the underlying PDE with a spectral computation that satisfies the relevant radiation con-
ditions. Our tool works for finite-amplitude topography but is restricted to sub-critical
topography slopes.

Detailed results are presented for the decay of the gravest vertical internal wave mode
as it encounters finite stretches of either sinusoidal topography or of random topography
defined as a Gaussian random process with a simple power spectrum. A number of scaling
laws are identified and a simple expression for the decay rate in terms of the power
spectrum is given. Finally, the resulting formulas are applied to an idealized model of
sea-floor topography in the ocean, which seems to indicate that this scattering process
can provide a rapid decay mechanism for internal tides. However, the present results are
restricted to two spatial dimensions and to uniform stratification, which restricts their
direct application to the real ocean.

1. Introduction
1.1. Internal tides in the ocean

Internal gravity waves are an essential component of the dynamics of the ocean. Not
only are they the most energetic form of fluid motion at small scales, but they also
provide an important contribution to small-scale mixing, especially in the vertical, via
the three-dimensional turbulence that is induced in localized regions where the waves are
unstable and break. Broadly speaking, such turbulent vertical mixing across the stable
stratification surfaces of constant density, say, is vital for the functioning of a global ocean
overturning circulation, in which particles must be allowed to cross these density surfaces.
It is believed that the breaking of small-scale internal waves in the ocean interior, together
with cross-stratification mixing at outcropping stratification surfaces at the ocean surface

† Author to whom correspondence should be addressed.
‡ Current address: School of Engineering and Applied Sciences, Harvard University, Cam-

bridge, MA 02138, USA

Hawaii
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Nonlinear interactions 
with the mean flow

Under consideration for publication in J. Fluid Mech. 1

Forcing of oceanic mean flows by dissipating
internal waves

Nicolas Grisouard and Oliver Bühler

Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New
York NY 10012, USA

(Received 17 January 2012)

We present a theoretical and numerical study of the effective mean force exerted on an

oceanic mean flow due to the presence of small-amplitude internal waves that are forced

by the oscillatory flow of a barotropic tide over undulating topography and are also sub-

ject to dissipation. This extends the classic lee wave drag problem of atmospheric wave–

mean interaction theory to a slightly more complicated oceanographic setting, because

now the steady lee waves are replaced by oscillatory internal tides and, most importantly,

because now the three-dimensional oceanic mean flow is defined by time averaging over

a tidal cycle rather than by the zonal averaging familiar from atmospheric theory.

Although the details of our computation are quite different, we recover the main action-

at-a-distance result from the atmospheric setting, namely that the effective mean force

that is felt by the mean flow is located in regions of wave dissipation, and not necessarily

near the topographic wave source.

Specifically, we derive an explicit expression for the effective mean force at leading

order using a perturbation series in small wave amplitude within the framework of gen-

eralized Lagrangian-mean theory, discuss in detail the range of situations in which a

strong, secularly growing mean-flow response can be expected, and we then compute the

effective mean force numerically in a number of idealized examples with simple topogra-

phy structures.

1. Introduction

Internal gravity waves play an essential part in the global-scale dynamics of both the

atmosphere and the oceans. This is despite their comparatively short spatial and temporal

scales, which for the most part renders them unresolvable in present-day computer models

for the global circulation. In the atmosphere the most important internal-wave effect is

the wave-induced vertical transport of angular momentum and the concomitant effective

force exerted on the flow in locations where the waves break or otherwise dissipate. Here

the simplest relevant thought experiment is the lee wave problem, i.e., a steady wind

blowing over undulating topography that generates upward-propagating internal waves

with zero absolute frequency. There is a net drag force on the topography and, in the

simplest setting of zonal averaging applied to a horizontally homogeneous mean flow,

there is an equal-and-opposite effective force exerted on the mean flow in the regions of

wave dissipation. Remarkably, these lee waves are felt by the mean flow not where the

waves are generated but only where the waves are dissipated.

The theoretical underpinnings for the computation of the effective force exerted by

dissipating internal waves in the atmosphere are by now very well established (e.g. Bühler

2009, §6), and form the basis for all parametrization schemes of such effects in numerical

models. Basically, this classic theory works by exploiting the zonal symmetry of the

assumed wind profile, which makes zonal averaging a natural procedure in order to

Internal waves have strong 
horizontal vorticity

Requires different flavour of theory
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Governing Equations

Rotating Boussinesq equations on an f-plane
u = (u, v, w) f = f�zVelocity Coriolis vector

∇ · u = 0

No-normal-flow boundary conditions at  ocean top and bottom

Du

Dt
+ f × u + ∇P = b�z −∇φ tidal potential

The tidal potential can be eliminated by using a 
reference frame moving back and forth with the 
barotropic tide of the ocean

D(b + N2z)
Dt

=
Db

Dt
+ N2w = 0 stratification and buoyancy
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Linear equations

u = au� + O(a2) where a� 1

(∂tt + N2)(w�
xx + w�

yy) + (∂tt + f2)w�
zz = 0

w�(x, y, z, t) = �
�
e−iωt w(x, y, z)

�

wxx + wyy −
ω2 − f2

N2 − ω2
� �� �

=µ2

wzz = 0

time-periodic wave motion

µ = 0.075 for lunar semi-diurnal tide at Hawaii (M2)

Spatial wave structure governed 
by a hyperbolic equation ..
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Internal Tide Generation
(Two spatial dimensions)

color: vertical velocity
arrows: velocity

Mathematical model with ocean at rest, bottom topography moving back and forth with 
excursion amplitude 100-200 metres (exaggerated in plot)

Solution for compact topography computed using a 
Green’s function for unbounded channel
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Wave Energy flux does 
not tell..

color: vertical velocity
arrows: energy flux

Time-averaged wave energy flux can be used to diagnose 
energy conversion (approx. 1.5 TW in global ocean), but does 
not explain where interactions with mean flow take place

E =
1
2

�
|u�|2 +

b�2

N2

�
Wave energy Energy conservation law ∂E

∂t
+ ∇ · (P �u�) = 0
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Eulerian Wave-Mean 
Interaction Theory

Phase-averaged mean flow + Reynolds decomposition

u = u + u� ⇒ u� = 0

Uninviting already at leading order:

∂u

∂t
+ f × u + ∇P − b�z = −∇ · (u�u�)

∇ · u = 0

∂b

∂t
+ N2w = −∇ · (b�u�)

u = O(a2)

Many source terms, also complications at 
moving boundary:

Very hard to draw conclusions about         
u · n �= 0

ut
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Lagrangian Wave-Mean 
Interaction Theory

10.2 Elements of GLM theory 211

ux x t
x

x

uL x t

x

t=

z y
x

Fig. 10.2. Mean and actual trajectory of a particle for a problem with multiple time scales:
x + ξ(x, t) is the actual position of the fluid particle whose mean position is x at (slow) time t.
The notation uξ (x, t) is shorthand for u(x + ξ(x, t), t).

10.2 Elements of GLM theory

GLM theory is an abstract theory because it applies to arbitrary Eulerian av-
eraging operators: each such Eulerian-mean operator induces a correspond-
ing Lagrangian-mean operator in GLM theory. Still, the kinematics of GLM
theory is most easily visualized if the problem has multiple time scales and
the averaging operation is defined by time-averaging over the fast time scale
(see Figure 10.2). This is the approach that we will use here.

10.2.1 Lifting map and Lagrangian averaging

At the heart of GLM theory is the definition of a disturbance-associated
particle displacement field ξ(x, t) that generalizes the linear particle dis-
placements aξ′1(x, t) to finite amplitude. Thus, the kinematic definition of
ξ(x, t) is that

x + ξ(x, t) (10.20)

is the actual position at time t of the fluid particle whose mean position is
x (cf. Figure 10.2). It is crucial that ξ is itself evaluated at x, because this
ensures that the Eulerian mean of (10.20) is simply equal to x and therefore
the condition

ξ = 0 (10.21)

holds, so ξ is necessarily a disturbance field.
Another way to look at (10.20) is as the definition of a time-dependent

map, which we will call the lifting map

xξ: x → xξ = x + ξ(x, t). (10.22)

Goal is to stick to particles whilst averaging in order to retain Lagrangian information
Particle displacement field              .  Generalized Lagrangian-mean theory (AM78).ξ(x, t) 4/5/10 8:11 PMAmazon.com: Waves and Mean Flows (Cambridge Monographs on Mechanics) (9780521866361): Oliver Bühler: Books
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11.3 Langmuir circulations and Craik–Leibovich instability 269

x
y

Fig. 11.1. Advection of a vortex tube below the waves by the pseudomomentum contribution to
the zonal mean flow, which is uL = p0(z). Left: unperturbed flat tube with positive y-vorticity,
rolling clockwise. Middle: perturbed tube with vertically raised centre. Right: exaggerated view
of perturbed tube advected by the zonal flow. The induced velocity by this sheared-over vortex
tube reinforces the rising motion in the centre, which is the positive feedback mechanism of the
instability. Conversely, this feedback becomes negative if the direction of the basic vorticity is
reversed, which explains the instability criterion.

dissipation and breaking will indeed point in the positive y-direction and
hence R�(z) will be positive and the mean flow will therefore be robustly
unstable to overturning in the yz-plane. This generic state of affairs explain
the ubiquity of Langmuir circulations.

11.3.2 Alternative view using vortex dynamics

The notion of a wave-induced effective stratification for the two-dimensional
zonally averaged mean flow in the yz-plane is elegant, but it does not gen-
eralize to three-dimensional mean flows defined via averages over the rapid
time scale of the waves, say. The situation is perhaps akin to the effective
sideways stratification induced by Coriolis forces in a two-dimensional xz-
model (cf. §8.4), which also did not generalize to three dimensions. Arguably,
a more robust understanding of the instability can be obtained by consider-
ing the three-dimensional vortex dynamics below the free surface as depicted
in figure 11.1. First off, in the absence of stratification and viscous effects
the three-dimensional vortex lines are materially advected in the sense that

D

Dt
(∇× u) = [(∇× u) · ∇]u (11.48)

holds for incompressible flow. The velocity field u is then the sum of a
vortical and a wave part. The vortical part is the inversion of ∇ × u via
the standard Biot–Savart law using a no-normal flow boundary condition at
z = 0, and the wave part is an irrotational flow associated with the motion
of the free surface. Now, the analogue of (11.48) for a three-dimensional

270 Zonally symmetric GLM theory

incompressible Lagrangian-mean flow is (10.99), i.e.,

D
L
(∇× (uL − p)) = [(∇× (uL − p)) · ∇]uL. (11.49)

As said before, this means that ∇ × (uL − p) is advected by uL. The

Lagrangian-mean flow satisfies a no-normal flow boundary condition at z = 0

to good approximation, so uL contains only a vortical part, but the dynam-

ics of this vortical part is mixed up with the pseudomomentum of the waves.

This is the key for understanding the wave–vortex interactions here.

In general, in order to compute uL from the advected field ∇× (uL − p)

one inverts the latter using the Biot–Savart law and then adds a contribution

equal to the projection of p onto the space of non-divergent vector fields that

satisfy a no-normal flow condition at z = 0. In the present case p = p0 is

horizontal and ∇ ·p0 = 0, which means one simply adds p0 to the Biot–

Savart inversion of ∇ × (uL − p). The upshot is that vortex tubes formed

by ∇× (uL−p) are advected by a vertically sheared zonal mean flow equal

to p0(z) and also by the kind of self-induced velocity field that is familiar

from ordinary three-dimensional vortex dynamics.

We can now gain an understanding of the mean-flow instability from the

point of view of this kind of vortex tube dynamics. For example, in the basic

state we consider a straight spanwise vortex tube pointing in the positive

y-direction, as suggested by the instability criterion. This is depicted in the

first panel in figure 11.1, and the second panel shows this basic vortex tube

in a slightly perturbed state with an initial undulation that raises the tube

in the vertical. The differential advection of this raised tube by the strongly

sheared pseudomomentum component of the zonal mean flow will cause the

elevated parts of the vortex tube to be advected more quickly in x than the

lowered parts of it, and therefore the tube will be deformed into a tilted

shape as indicated in the third panel.

Crucially, the induced velocity by this tilted and curved vortex tube will

point upwards in the centre region of the tube, as is obvious from a compar-

ison to the induced velocity of a three-dimensional vortex ring. This rein-

forces the original vertical undulation of the basic vortex tube and leads to

instability. This positive feedback loop is the basic mechanism of the Craik–

Leibovich instability from a vortex dynamics perspective. Conversely, if the

basic vorticity points in the negative y-direction then the same construction

would lead to a downward vertical velocity in the centre region and therefore

to a negative feedback, and stable vortex tube oscillations. Of course, these

conclusions are consistent with those of the previous effective stratification

computation, but it is remarkable how different a perspective is offered by

these two complementary views of the same physical instability.

Second, paperback edition: Sept 2013, Dec 2013, March 2014 April 2014!
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Lagrangian Wave-Mean 
Interaction Theory

Obtain nice equations in vorticity form.  At leading order:

∂b
L

∂t
+ N2wL = 0

Pseudomomentum vector:

p = −(∇ξ · [u� +
1
2
f × ξ])

∂ξ

∂t
= u�

�
p =

k

ω̂
E for plane waves

� Steady non-dissipating waves do not force 
the mean flow!

∂

∂t
∇× uL + f ∇ · uL − f

∂uL

∂z
−∇× (b

L�z) =
∂

∂t
∇× p

∇ · uL =
1
2

∂

∂t

�

i,j

∂2(ξiξj)
∂xi∂xj
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Add Wave Dissipation

Simple model for wave dissipation: buoyancy damping

Leading-order mean flow 
equations for steady waves:

∇ · uL = 0

F =
α

2ω

N2

ω2 + α2
�(w∗∇w)

∂

∂t
∇× uL − f

∂uL

∂z
−∇× (b

L�z) = ∇× F

Can compute effective mean force
based on complex w(x,y,z):

∂b�

∂t
+ N2w� = −αb� where α > 0.

∂b
L

∂t
+ N2wL = 0

w�(x, y, z, t) = �
�
e−iωt w(x, y, z)

�
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Mean flow response
3d: dissipating tides cause a strong interaction

GLM potential  vorticity deviation at leading order 

Time evolution 
Q

L = �z · ∇× (uL − p) +
f

N2
b
L
z

∂Q
L

∂t
= �z · ∇× F ⇒ Q

L(x, t) = Q
L(x, 0) + t �z · ∇× F

dissipative force

PV changes without bound due to 
wave-induced effective force, so 
strong interaction

Fundamental link between PV 
forcing and wave dissipation?

Q =
1
ρ
(∇× u + f) · ∇θ

34 Nicolas Grisouard and Oliver Bühler

Figure 7. Two cases for which the linear dissipation rate per unit time α is increased from ω/10

to ω/2. (a) Caption as for Figure 3, with the exception that max[CzL/(aU0ω)] ≈ 5.9 × 10−6.

(b) Caption as for Figure 6(a), with the exception that max[CzL/(aU0ω)] ≈ 140× 10−6.

6.4. Influence of the dissipation

The value of α we used so far, associated with a decay scale of about a week, is not

shockingly unreasonable but does not pretend to be realistic and is not deduced from

the literature. Let us now briefly describe how the forcing of the mean flow is modified

by variations of α.

Figure 7 shows the γ = 0 and 0.7 cases, for which α/ω = 0.5 (instead of the previous

α/ω = 0.1). The peak values of Cz are now higher than their low-dissipation counter-

parts of §§ 6.2 and 6.3, while the low values of Cz occupy roughly the same volume,

corresponding to a more rapid spatial decrease of the mean flow forcing.

Indeed, increasing the value of α has the effect of limiting the range of propagation

of the O(a) linear waves by increasing their dissipation near the topography. Hence, one

can understand why the forcing of the mean flow increases in terms of peak value but

that this increase is limited to the vicinity of the topography. Far from it, the amplitude

of the wave field is reduced, as is the forcing the the mean flow.

Page 34 of 46
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A rose by any other name: 
pseudomomentum and impulse,

flip sides of the same coin

dissipation

Dissipative pseudomomentum rule 2d examples

Wavepacket Vortex dipole

Pseudomomentum is converted 
into vorticity impulse under 

dissipation

P =
�

p dxdy

I =
�

(y,−x) q dxdy

P + I = const

q =
∇× u

h

Effective mean force for PV is (minus) 
the dissipation density of 
pseudomomentum
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8.3 Mean-flow response and the vortical mode 189

Fig. 8.1. Horizontal plan view of three-dimensional rotating lee wave in response to zonal flow

U > 0 over a Gaussian hill defined by h = exp(−(x2
+y2

)/2R2
). Parameter values are R = 50km,

U = 10m/s, N = 0.01s
−1

, and f = N/100. Left: vertical elevation at z = 10km. Right: same at

z = 20km.

for propagating waves. The vertical elevation ζ �(x, y, z) has the horizontal

Fourier representation

ζ̂(k, l, z) = exp(imz)ĥ(k, l), (8.36)

which yields a straightforward numerical computation of the wave field as

illustrated in figure 8.1. The most notable new element is the curved bow

wave structure in the horizontal plane caused by compact two-dimensional

topography.

The mean drag is now a two-dimensional vector

(Dx, Dy) = (ζ �xP �, ζ �yP
�). (8.37)

For a single plane wave with h = h0 cos(kx+ ly) the isotropy of the problem

in the horizontal plane together with the fact that the component of the

wind blowing perpendicular to (k, l) is irrelevant leads to the result that the

drag is parallel to (k, l) and UDx < 0. Specifically, the mean drag is

(Dx, Dy) = −sgn(k)
(k, l)√
k2 + l2

h2

0

2

�
U2k2 − f2

�
N2 − U2k2 (8.38)

for propagating waves and zero for evanescent waves. This equals minus the

vertical flux of horizontal pseudomomentum in (8.29-8.30). Overall, (8.38)

makes clear that the two-dimensional drag is not parallel to the basic wind.

8.3 Mean-flow response and the vortical mode

The mean continuity equation

vy + wz = 0 (8.39)

3d: potential vorticity response 
to localized wavetrain

Pseudomomentum plus 
Impulse conservation law 
holds in 3d stratified flow 
at low Froude number

Impulse now based on 3d 
PV:

q =
(∇× u + f) · ∇θ

ρ

Rossby-Ertel PV

Local pseudomomentum rule is also helpful for thinking about 
the zonally averaged problem

Horizontal cross section on stratification 
surface of mountain lee wave pattern
Wind from left to right over mountain below

Wave dissipation creates vortex 
dipole pointing upstream
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Atmospheric wave drag under the microscope
(Cohen, Gerber, Bühler 2014)
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Fig. 2. A latitude-longitude diagram, for a generic level in the mid-stratosphere, of Rossby
wave and gravity wave breaking that result in PV mixing. (a-d) large-scale orthography is
in dashed black, and the red lines denote PV isopleths increasing poleward. In (a) Rossby
waves are generated by large-scale orthography propagate upwards and in (b) distort the
materially conserved PV, thus transporting lower PV values polewards and higher PV val-
ues equatorwards. In (c) the wavy distortion continues irreversible until the wavy pattern
breaks, resulting in PV mixing as in (d). (e) Gravity waves are generated by a small-scale
orthography propagate upwards and, in b), break and exert a retrograde forcing, thus change
the PV as in (f). This PV change acts as a local mixing, effectively separating PV isopleth.
In (g) assume many such gravity wave breaking events. Aggregation of them or applying a
zonal mean result in effective PV mixing as in (h).

37

Can piece together global PV rearrangement from localized wave breaking events
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Mean-flow refraction and 
pseudomomentum

Wave capture and wave–vortex duality 3

Figure 1. Wavepacket exposed to pure horizontal strain contracting along the x-axis and ex-
tending along the y-axis. The wavecrests align with the extension axis and their spacing is
decreased, so that the wavenumber vector k points at right angles to the extension axis and
grows in magnitude, as suggested by the large arrow.

wavepacket and not just when it is generated and dissipated. These forces and momentum
fluxes are anything but local. In fact, the key to understanding the situation is the same
as the key to understanding what happens to a 2-dimensional vortex pair being pulled
apart by pure strain. Here PH is replaced by the Kelvin hydrodynamical impulse I of
the vortex pair, namely the first moment of the vorticity distribution rotated through a
right angle, i.e. the dipole moment; see (5.3) below. I changes under strain in a manner
closely analogous to the way PH changes for the wavepacket, accompanied by essentially
the same remote-recoil effects.

In developing a general theoretical framework we shall find it convenient, therefore,
to speak of a generalized vortex dynamics involving a wave–vortex duality, implying a
nontrivial extension of standard vortex dynamics for strongly stratified, layerwise-2-dim-
ensional flow. A central result of this paper is that when vortices and wavepackets are both
present they satisfy a conservation theorem for the sum of the PH and I contributions.
Thus, for instance, if a wavepacket is being strained by the velocity field of a nearby
vortex pair, then the resulting changes in its PH are accompanied by compensating
changes in I for the vortex pair. An example of this will be analysed in detail. One may
regard the situation of figure 1 as a formal limiting case in which the background strain is
produced by suitably distributed vortices at infinity. The changing PH of the wavepacket
is accompanied by a remote recoil on the infinitely distant vortices, changing their total
I in compensation.

The wave–vortex duality just indicated stems from the relation between P and the
Kelvin circulation for a general material circuit — see (6.3) below — more specifically the
relation between PH and the Kelvin circulation for material circuits lying on stratification
surfaces. Those relations are most clearly exhibited by the GLM theory, via its exact
definitions of P and PH (Andrews & McIntyre 1978a, hereafter AM78a; also Gjaja & Holm
1996, Bühler 2000, hereafter B00), which directly express the contributions to the Kelvin
circulation from correlations between wave-induced velocity fluctuations and undulations
of the material circuit. In the case of large-scale atmosphere–ocean dynamics the effective
forces associated with PH are therefore related to distributions of Rossby–Ertel potential
vorticity (PV), and to the balanced, vortical part of the velocity field derivable from
PV inversion (e.g. Hoskins et al. 1985, 1987), which to a first approximation is just the
layerwise-nondivergent part. It is important to note, therefore, that there is no reason to
expect there to be such a thing as a PH -associated force straightforwardly acting on the

Wavepacket is squeezed 
in x and stretched in y 

by basic strain flow.
Wave action is constant

Ray tracing:
Wavenumber vector 
k  increases in size

Pseudomomentum p 
increases as well

p = k A

A =
E

ω̂

Pseudomomentum changes, what about the vortex impulse?
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Pseudomomentum plus impulse 
conservation law

Impulse

qL =
�

∂v

∂x
− ∂u

∂y

�L

= �z · ∇× (uL − p
H

)
GLM 

theory 
used here

14 Bühler & McIntyre

7. PH + I conservation with and without mean-flow refraction
7.1. Preliminaries

Our aim in this section is to extend Bretherton’s problem (B69) to cases in which the
wavepacket is refracted and possibly captured by the mean flow. In particular, we seek a
generalization of the relation between horizontal pseudomomentum and Kelvin impulse
indicated by Bretherton’s result (5.1). The key is to replace the left-hand side of (5.1)
by the GLM version suggested by the simplicity of (6.4) — that is, the vorticity used in
the definition of the impulse is ∇× (uL − p) rather than ∇× uL or ∇× u .

Before proceeding we should sound one note of caution. Unlike the GLM relations dis-
played in §6, the relation between momentum and Kelvin impulse holds only in the
strong-stratification limit underpinning (5.3) and (5.5). In fact generalization of the
Kelvin impulse concept to less restrictive parameter regimes is not straightforward, for
subtle reasons related, in part, to the limitations inherent in the notions of balanced
flow and PV inversion. More specifically, there is an expectation that balanced flows
will not themselves precisely conserve even momentum, let alone impulse (McIntyre &
Norton 2000), because of the ubiquity of the weak Lighthill radiation, or spontaneous-
adjustment emission, of inertia–gravity waves by unsteady vortical motion — yet another
aspect of wave–mean and wave–vortex interaction problems and, in the present context,
another aspect of the far-field recoil effects. In the less restrictive parameter regimes
there are, therefore, added layers of complication within the aphorism that “momentum
is complicated”.

So it is at present a matter of speculation how far the impulse concept can usefully be
generalized. We content ourselves here with returning for the most part to the strong-
stratification limit and the ray-tracing approximations, with f = 0 in this section and
f �= 0 in §8. We can then use the concept of impulse in the original Kelvin form, apart
from using ∇× (uL − p) instead of ∇× u, allowing everything to be made analytically
clear in a simple way.

7.2. The PH + I conservation theorem
Assuming ideal-fluid flow in the strong-stratification limit, and remembering the absence
of Stokes drifts in plane internal waves, we can replace (5.3) by their GLM counterparts

∇H · uL = 0 with wL = 0 (7.1)

and take the mean isentropes θ
L

= const. to be horizontal planes. Here ∇H is the
horizontal projection of ∇. Given the p

H
field, the mean flow uL is then fully determined

by the circulation integrals (6.3) on horizontal z-surfaces, or equivalently by the horizontal
distributions of the material invariant qL ∝ Q

L:

qL = �z · ∇× (uL − p
H

) ; DL

qL = 0 . (7.2)

Far-field recoil effects have been pushed out of sight, to infinity. In components, we have

∂uL

∂x
+

∂vL

∂y
= 0 and

∂vL

∂x
− ∂uL

∂y
= qL + �z · ∇× p

H
, (7.3)

generalizing (5.5), hence applying both to the Bretherton problem qL ≡ 0 and to its
extensions to arbitrary wavefields and vortices.

If we now define the impulse I and its density i by

I(t) =
� � �

i (x, t) dxdydz where i = (y,−x, 0) qL , (7.4)
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(a): Wavepacket (b): Vortex dipole

Figure 3. Illustration of wave–vortex duality (schematic only, plan view). Left: a wavepacket
on an isentrope together with streamlines indicating the return branches of the (horizontal)
Bretherton flow. As in figure 1, the arrow indicates the direction and magnitude of p

H
. Right:

a vortex pair on the same isentrope with qualitatively the same return flow. The shaded areas
indicate nonzero PV values with opposite signs.

of the ordinary 2-dimensional vortex pair sketched in figure 3b, with velocities falling

off as the inverse square of distance. For convenience we call the layerwise-2-dimensional

O(a2) dipolar flow indicated in figure 3a the Bretherton flow of the wavepacket; the part

of the flow outside the wavepacket will also be called the wavepacket return flow. In B69

the O(a2) velocity field was computed in terms of the usual Eulerian-mean velocity u,

defined by averaging over a wave period at fixed x . It was pointed out in B69 that the

Kelvin impulse of the Eulerian-mean flow u in figure 3a is formally well defined, by an

absolutely convergent volume integral — unlike the momentum — and that in the ray-

theoretic approximation the impulse of u is just equal to the packet-integrated horizontal

pseudomomentum. That is, B69 showed that

� � �
(y,−x, 0)

�
∂v

∂x
− ∂u

∂y

�
dxdydz = PH ≡

� � �
p

H
dxdydz (5.1)

where p
H

is the horizontal projection of the pseudomomentum density p, with p itself

given in the ray-theoretic approximation by the standard formula

p =
E

ω̂
k = Ak . (5.2)

On the left of (5.1) the impulse integral is absolutely convergent, essentially because

the integrand has compact support. To sufficient approximation, the integrand is zero at

altitudes z above and below the wavepacket. At the intervening z values, the return flow is

layerwise-irrotational outside the wavepacket implying (∂v/∂x− ∂u/∂y) ≡ �z ·∇×u = 0

there. The entire Bretherton flow, inside and outside the wavepacket, is layerwise-nondi-

vergent,

∂u

∂x
+

∂v

∂y
= 0 , with w = 0 . (5.3)

Bretherton’s result (5.1) follows at once from compactness of the wavepacket, which

allows us to write
� �

p
H

dxdy =

� �
(y,−x, 0) (�z · ∇× p

H
) dxdy (5.4)

using integration by parts, together with the relation

�z · ∇× u = �z · ∇× p
H

(5.5)

Pseudomomentum

Potential 
vorticity
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then because DL

q
L = 0 we have DL

i = (vL
,−u

L
, 0) q

L. A little manipulation, using
(7.1) and the definition of the horizontal Kronecker delta ∆ij with ∆i3 = ∆3j = 0,
puts this equation for DL

i into conservation form apart from a term reminiscent of the
right-hand side of (2.7):

∂ ii
∂t

+
∂

∂xj

�
iiu

L

j
+ u

L

i
u

L

j
− ( 1

2 |uL|2−uL·p
H

) ∆ij − p
Hi

u
L

j

�
=

∂u
L

j

∂xi

p
Hj

(i = 1, 2). (7.5a)

Indeed, (2.7) with (4.1) and (5.2) implies

∂p
Hi

∂t
+

∂

∂xj

�
p
Hi

ĉgj + p
Hi

u
L

j

�
= −

∂u
L

j

∂xi

p
Hj

(i = 1, 2), (7.5b)

for nondissipative wavemotion, correct to O(a2) since U = uL + O(a2). By comparing
the right-hand sides we see, therefore, not only that p

H
+ i is a conserved density for

nondissipative motion, but also how the individual rates of change of p
H

and i are related
to wave propagation and horizontal refraction. For instance, it is the source–sink term
−(∂u

L

j
/∂xi)pHj

that accounts for the exponential rate of increase of the packet-integrated
pseudomomentum in the situation of figure 1a.

For an arbitrary collection of wavepackets and vortices within a closed system whose
boundaries recede to infinity, all the flux terms vanish fast enough to make no contribution
at infinity. Remarkably, this remains true even for q

L distributions with nonvanishing
monopole moment, since with q

L, i and p
H

all compact or sufficiently evanescent the
only flux terms not similarly compact or evanescent are those quadratic in uL which,
even in monopolar cases, are O(r−2) where r2 = x2 + y2. So by adding (7.5a) to (7.5b)
and integrating, we have simply

PH + I = constant , (7.6)

while the compensating individual rates of change are nonzero only when there is horizon-
tal refraction somewhere, hence creation or destruction of horizontal pseudomomentum:

dPH

dt
= −

� � �
(∇HuL) · p

H
dxdydz (7.7)

and dI
dt

=
� � �

(∇HuL) · p
H

dxdydz . (7.8)

It should be remembered that I , though not its rate of change, depends on the choice of
coordinate origin when q

L has nonvanishing monopole moment.
We note in passing that (7.5a) and (7.8) are valid at arbitrary finite amplitude a , if

the exact GLM definition of p
H

is used, though dependent on the strong-stratification
conditions (7.1)–(7.2). By contrast (7.5b), (7.6) and (7.7) have been derived correct to
O(a2) only, and depend on the ray-theoretic approximations.† We note also that the
conservation theorem does not require the constant background stratification assumed
in (2.7). It is valid for z-dependent slowly varying stratification N2(z), since background
z-dependence affects only the z or i = 3 component of the right-hand side of (2.7).

We may summarize everything so far by displaying the full differential form of the
conservation theorem implied by (7.5a) and (7.5b), remembering always that the strong-
stratification conditions (7.1)–(7.2) are needed (banishing far-field recoil to infinity) and

† There is an exact GLM counterpart of (7.5b) — essentially the difference between eqs. (3.8)
and (8.7a) of AM78 — but its application is far less simple and will be left aside here. The main
complication is that background inhomogeneities, including ∇ρ̃ , can no longer be treated as
independent of wavefields. Finite-amplitude wave propagation involves self-refraction.
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conditions (7.1)–(7.2). By contrast (7.5b), (7.6) and (7.7) have been derived correct to
O(a2) only, and depend on the ray-theoretic approximations.† We note also that the
conservation theorem does not require the constant background stratification assumed
in (2.7). It is valid for z-dependent slowly varying stratification N2(z), since background
z-dependence affects only the z or i = 3 component of the right-hand side of (2.7).

We may summarize everything so far by displaying the full differential form of the
conservation theorem implied by (7.5a) and (7.5b), remembering always that the strong-
stratification conditions (7.1)–(7.2) are needed (banishing far-field recoil to infinity) and

† There is an exact GLM counterpart of (7.5b) — essentially the difference between eqs. (3.8)
and (8.7a) of AM78 — but its application is far less simple and will be left aside here. The main
complication is that background inhomogeneities, including ∇ρ̃ , can no longer be treated as
independent of wavefields. Finite-amplitude wave propagation involves self-refraction.

Refraction and dissipation 
terms included!!

skew linear moment of PV

Holds with dissipation 
and with refraction!
How can this work?

McIntyre+B, 2005
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The missing link: Bretherton’s return 
flow 

Large-scale dipolar return flow 
at second order in wave amplitude

Far-field mean velocity is non-
divergent and decays with 
square of distance to wavepacket

Feynman: 
“children on a slide”

O(a2)

This O(a^2) Bretherton return 
flow can participate in wave-mean 
interactions and move O(1) 
vortices.

Can show that it contributes to 
vortex impulse dynamics!
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Example 1: remote recoil

counter-clockwise
vortex 2) Pseudomomentum vector is changed 

by inhomogeneous vortex flow 

Pseudomomentum change well-defined 
and negative

1) Wave-induced mean flow at O(a2) 
pushes O(1) vortex to the left

Impulse change well-defined and 
positive

Wavepacket scattering by vortex

Equal and opposite recoil in acoustic system 
(B+McIntyre 2003)
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Remote recoil also found in defocusing nonlinear 
schrödinger equation

(Guo & Bühler 2014)
027105-11 Y. Guo and O. Bühler Phys. Fluids 26, 027105 (2014)
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FIG. 3. (a) Numerical ray-tracing results for k0 = 1 and various y0 = −D. Rays are started from |y0| = {5, 10, 20} with
the corresponding values for ε are {0.2, 0.1, 0.05}. The y-axis is rescaled by y0 + (y(t) − y0)/0.05 to show the scattering;
(b) numerical ray-tracing results for ε = 0.1 (or |y0| = 10) and different k0. The initial wavenumber k0 are chosen to be {1,
2, 4}. The y-axis is rescaled by y0 + (y(t) − y0)/0.02 to show the scattering.

source. This makes obvious that h20 is nonzero only in the vicinity of the wavetrain. Moreover, by
assumption the action density A is slowly varying compared to the healing length, which is unity in
our scaled variables, and therefore the solution of (50) inside r = D/2 is well approximated by the
slowly varying expression

h20 = −
k2

0

2ω̂0
A = −

k2
0

2ω̂0
As(y) such that − U · ∇h20 =

k2
0

2ω̂0
V

d As

dy
. (51)

The accuracy of (51) is discussed in more detail in Appendix B. We can now repeat the earlier
argument and conclude that the components of u21 are harmonic on the restriction r ≤ D/2, and
hence the recoil force at O(a2ε2) is again given by a Magnus formula, namely,

RV = −# ẑ × u21(0, 0). (52)

Inverting (49) with ∇ × u21 = 0 then provides the velocity at the vortex as

u21(0, 0) = 1
2π

∫ ∫
(−x,−y)
x2 + y2

[
k0

γ

∂U
∂x

As(y) +
(

2ω̂0

2 + k2
0

+
k2

0

2ω̂0

)
V

d As

dy

]
dxdy

= x̂
#k0sgn(D)

16π D2

(
1
γ

+ k0

ω̂0
+

(2 + k2
0)(4 + k2

0)
4γ

) ∫ +∞

−∞
As(y)dy (53)

with γ given in (39). Consequently, the recoil force at O(a2ε2) for scattered waves is

RV = − ŷ
#2sgn(D)

16π D2

(
1
γ

+ k0

ω̂0
+ (2 + k2

0)(4 + k2
0)

4γ

)
k0

∫ +∞

−∞
As(y)dy. (54)

The sign of the circulation does not matter for RV , but it does matter whether the waves pass to the
right or the left of the vortex. We use D > 0 if the waves pass to the right, as exemplified by the
lower rays in Fig. 3. Now, for small k0 the bracket in (54) goes to 4, which recovers the classical
shallow-water results in BM03.17 Moreover, in this limit k0 A = k0 E/ω̂0 → E and therefore at fixed
wave energy density the recoil force goes to a nonzero limit as k0 → 0. Conversely, for large k0 the
bracket goes to 4/k0, which means the recoil force becomes proportional to the action density A in
this limit. At fixed wave energy density E = ω̂0 A, this means the recoil force tends to zero as 1/k2

0
as k0 → ∞.

B. Scattering angle and scale-selective refraction

From the recoil force at O(a2ε2), we can compute the global scattering angle θ∗ of the waves.
As described in BM03,17 this is based on a global momentum budget argument, which gives an
equality between −RV and the total rate of change of pseudomomentum. The starting point is the

027105-17 Y. Guo and O. Bühler Phys. Fluids 26, 027105 (2014)
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FIG. 5. Collapse region based on the dispersion relation (70). The boundary consists of the straight lines M = 0 and M =
−2 and the connecting lower curve, which has been found numerically. The right boundary M = 0 is included in the collapse
region, but not the others. For example, the lower-left point on the boundary is at (−2, 0.616), which satisfies (74) with
turning radius r∗ = 1.383. Points A, B, and C correspond to the three panels in Fig. 6, respectively.

Another difference between the acoustic and the NLS case follows from the observation that
if M #= 0, then the intrinsic frequency ω̂ ∝ 1/r2 and kφ ∝ 1/r in both cases, but kr ∝ 1/r2 in the
acoustic case while kr ∝ 1/r in the NLS case. This means that in the acoustic case kr dominates
over kφ and hence the wavenumber vector always turns precisely into the vortex as r → 0, whereas
in the NLS case kr and kφ are comparable and hence the wave crests come into the vortex with a
finite angle of attack, which is a function of M. Finally, in both the acoustic and the NLS case the
rays make an infinite number of revolutions around the vortex before reaching r = 0, but only in
the acoustic case is the geometric length of the rays also infinite in any finite neighbourhood of the
vortex. This is another repercussion of the asymptotically much faster intrinsic group velocity, and
hence much more rapid collapse, in the NLS case compared to the acoustic case.

Of course, there are no true point vortices in any compressible fluid model such as the Navier-
Stokes equations, for example, and hence there the actual, finite-size vortex structure must eventually
be taken into account, which prohibits the strict collapse of acoustic rays onto a compressible vortex.
The situation is different in the NLS equations, where true point vortices are natural and essential
components of the dynamics. This warrants looking into the possible validity of ray tracing during
the collapse in the NLS equations.

C. Validity of ray tracing during wave collapse

Ray tracing approximates linear wave theory under the assumption that the waves form a slowly
varying wavetrain, so when ray tracing predicts a singular solution such as the formation of a wave
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FIG. 6. A positive unit vortex is placed at (0, 0) and the circle r = 1/
√

2 broadly marks the vortex core region, in which H ≤
0.07. Three different rays are shown, with initial conditions corresponding to the three points in Fig. 5. All rays are started at
(x, y) = (−5, 0). Left (point A): retrograde collapsing ray with M = −1.998, ω = 0.7373, and k = (0.6574, 0.3996). Middle
(point B): non-rotating ray with M = −1.000, ω = 0.2913, and k = (0.2626, 0.2). Right (point C): prograde collapsing ray
with M = 0, ω = 0.515, and k = (0.5, 0).

i�ψt = − �2

2m
∇2ψ + (V + U0|ψ|2)ψ

ψ =
√
ρ exp(iθ) and u =

�
m
∇θ

SchrödingerAcoustic

Scale-selective 
scattering angle and 
recoil force in 
Schrödinger equation

Also self-consistent 
collapsing wave rays 
all the way to the 
point vortex..

true point 
vortex
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Example 2: Wave capture

Dipole straining increases wavepacket pseudomomentum. 
Wavepacket return flow compresses vortex dipole and reduces impulse.   
Both compensate, and the sum of P + I is conserved!

wavepacket before 
refraction

wavepacket after 
refraction

Compressing a vortex 
couple reduces its 
impulse I ∝ Γd
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GI Taylor 1921: diffusion by 
continuous movements

Effective particle diffusivityFor isotropic and stationary velocity fields the one-particle diffusivity D, say, can be defined via

D =
1
2

d

dt
E(X2) =

� ∞

0
C(τ) dτ =

1
2
Ĉ(0) (10)

where X(t) is the x-coordinate of a particle trajectory starting from x = 0 at t = 0 and E
denotes the statistical expectation in the stationary distribution. The second equality uses the
Lagrangian auto-correlation function C(τ) = E(u(t + τ)u(t)) for the x-velocity and the third
equality uses the Fourier transform of this function, which is the power spectrum Ĉ(ω), at zero
frequency. These relations hold at sufficiently large times t.
For small-amplitude waves these expressions can be asymptotically evaluated in powers of the

wave amplitude a � 1 to obtain an estimate for the wave-induced diffusivity. For example, at
O(a) the relevant velocity field in (10) is the linear wave velocity au�1, say, which in principle
could give rise to a diffusivity D2 = O(a2). However, for propagating gravity waves in a rotating
system we have the bound (2) and therefore the wave frequency is strictly bounded away from
zero by the Coriolis parameter f and consequently the power spectrum is necessarily zero at
zero frequency, which implies that D2 is in fact zero. Instead, the leading-order diffusivity
D4 = O(a4) now arises due to nonlinear Lagrangian flow corrections denoted by a2uL

2 , say.
These corrections contain Stokes drift effects as well as a Eulerian flow response u2 that must
be carefully computed from the nonlinear part of the governing equations.
For example, in Bühler & Holmes-Cerfon (2009) it was shown that in rotating shallow water

the relevant calculations led to equations for u2 of the form

∇ · u2 = 0 and ∇× u2 = f
�
f2 − gH∇2

�−1
�
∇2 1

2
|u1|2 −

f

H
∇× (h1u1)

�
, (11)

where h1 is the linear layer depth disturbance, g is gravity, and H is the layer depth. These
were then used to compute the leading-order D4 by evaluating the right-hand side in terms of
random Gaussian wave fields. Subsequently, this work was extended to the three-dimensional
rotating Boussinesq system in collaboration with Raffaele Ferrari and reported in (Holmes-
Cerfon et al., 2011). The three-dimensional computations in Holmes-Cerfon et al. (2011) were
more complicated but followed the same principle. Overall, for deep-ocean applications we
estimated that D4 was relatively small and comparable to diffusivity values typically associated
with shear-flow dispersion (Young et al., 1982).

Project description
A new discovery in this direction was recently made together with a post-doc (Nicolas Grisouard)
during work related to the on-going NSF projects §5.1 and §5.2 listed below. Namely, we had
adapted a three-dimensional nonlinear numerical model to study wave-induced particle disper-
sion and as a calibration test we sought to replicate the theoretical results from Holmes-Cerfon
et al. (2011) using small-amplitude Gaussian random waves forced by suitable stochastic body
forces and subject to weak numerical dissipation. Surprisingly, it turned out that the dispersion
results were sensitively dependent on how the Gaussian wave spectrum was maintained in the
model. Specifically, it is clear that the same wave energy spectrum can be maintained in many
different ways by balancing the relative strength of white-noise forcing and dissipation. For very
weak forcing and dissipation the earlier theory, which is based on zero forcing and zero dissipa-
tion, is applicable whilst at larger forcing and dissipation a greatly increased particle diffusivity
was observed in the numerics, in fact it turned out that the second-order diffusivity D2 was
nonzero, despite the frequency constraint (2) (see example in figure 1)! This occurred even for
weakly damped waves, where the damping rate was very small compared to the wave frequency.

7

Lagrangian power 
spectrum at zero frequency
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Simple stochastic models and direct nonlinear numerical simulations of three-dimensional
internal waves are combined in order to understand the strong horizontal particle dis-
persion at second order in wave amplitude that arises when small-amplitude internal
waves are exposed to weak dissipation. This is contrasted with the well-known results for
perfectly inviscid internal waves, in which such dispersion arises only at fourth order in
wave amplitude.

1. Introduction
We report on a somewhat surprising numerical result and on its tentative theoretical

explanation in connection with our previous studies of particle dispersion by random
waves in Bühler & Holmes-Cerfon (2009) and Holmes-Cerfon et al. (2011) (hereafter
HBF). These studies addressed the fundamental question as to how non-breaking small-
amplitude gravity waves can contribute to the irreversible quasi-horizontal spreading
of particles along stratification surfaces at very small scales, all with an eye towards
applications in oceanography. In common with previous studies of similar questions (e.g.,
Herterich & Hasselmann (1982), Sanderson & Okubo (1988), Weichman & Glazman
(2000), Balk et al. (2004); Balk (2006)), we modelled the linear wave field as a stationary
random process with a power spectrum that is strictly zero at zero frequency, which
implies that the linear velocity field cannot by itself give rise to any diffusion in the sense
of Taylor (1921) (cf. § 2 below). The physical motivation for this assumption was that the
frequency of inertia–gravity waves is bounded from below by the Coriolis parameter f ,
which provides a natural non-zero frequency cut-off everywhere away from the equator.

This implied that particle diffusion could arise only via advection by the wave-induced
Lagrangian-mean flow at second order in wave amplitude. Specifically, if in terms of the
non-dimensional wave amplitude a� 1 the usual wave energy E0 and the wave-induced
Lagrangian-mean flow are O(a2), then the leading-order diffusivity D, which is quadratic
in the advecting velocity, satisfies D = O(a4), i.e., D ∝ E2

0 . Our implicit presumption was
that this result, which was derived assuming unforced and inviscid random waves, would
continue to hold approximately for waves that are maintained in a prescribed stationary
state by the combination of weak forcing and damping, provided only that the damping
rate α, say, is reasonably small compared to the frequencies of the waves.

† Author to whom correspondence should be addressed.
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