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Outline

« Comments on the 'Big Picture’

 Brief Primer on Tokamak Transport >

Avalanches in Flux-Driven Transport
« The ExB Staircase as a Heat Flux Jam

« Some Ongoing Work



Observations

Fundamental concept of zonal flow formation is secondary mode
in gas of drift waves, i.e. modulational instability
— wave kinetics

— envelope expansion

« N.B. No clear scale separation, inverse cascade, Rhines

mechanism ...
 Interest is driven by (favorable) impact of flows on confinement

« This drives a concern with feedback and the picture of co-

existing, competing populations, etc.



Key Question:

Is ‘drift wave turbulence’ in confined plasmas

really wave turbulence?



Tokamak Turbulence and
Transport

- How do plasmas form a profile?

- What limits gradients?



Primer on Turbulence in Tokamaks

2 scales:
p = gyro-radius
a = cross-section

p. = p/a <> key ratio

« VT,Vn, etc. driver
« Quasi-2D, elongated cells aligned with By
« Characteristic scale ~ few p;

« Characteristic velocity v, ~ p,c

Transport scaling: D ~ pv; ~ p.Dg ~ D¢p

..e. Bigger is better! = sets profile scale via heat

balance
Reality: D ~ p& Dy, a <1 = why??

Key Issue: Is drift wave turbulence ‘wave turbulence’?



‘Avalanches’ form! — flux drive + geometrical ‘pinning’
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(Autopower frequency spectrum of ‘flip) (Heat Flux Spectrum) (Idomura NF09)

Avalanching is a likely cause of ‘gyro-Bohm breaking’

=>» localized cells self-organize to form transient, extended transport events
Akin domino toppling:
Pattern competition Toppling front can

penetrate beyond region

with shear flows! of local stability




Concept of a Transport Bifurcation
i.e. how generate the sheared flow??

N.B. Edge sheared flow / transport barrier =& L->H transition

— First Theoretical Formulation of L—H Transition as an

. Q forward
- Transport Bifurcation

- (E,)’ Bifurcation

—VT
= Appearance of S-curve in a Physical Model of L—H Transition
=» Formulation of Criticality Condition (Threshold) for Transport Bifurcation

— Theoretical Ideas on Hysteresis, ELMs, Pedestal Width, .....



— Coupling of Transport Bifurcation to turbulence, ('UE)' suppression

— Non-linear Fick's Law, extension

forward
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Staircases and
Traffic Jams

Single Barrier - Lattice of Shear Layers

- Jam Patterns



Highlights

Observation of ExB staircases

— Failure of conventional theory

Turbulence drive: R,

(emergence of particular scale???)
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Normalized radius: r/ ”

Model extension from Burgers to telegraph
06T + NST 06T = x2026T - e
= CORST+ 06T + ASTD,6T = x2025T e e

finite response time = like drivers’ response time in traffic

Analysis of telegraph eqn. predicts heat flux jam %
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Motivation: ExB staircase formation (1)

e ExB flows often observed to self-organize in magnetized plasmas

eg.) mean sheared flows, zonal flows, ...

e ExB staircase’ is observed to form (G. Dif-Pradalier, P.D. et al. Phys. Rev. E. ’10)
GYSELA ’
“ExB stai rcase \ A - flux driven, full f simulation
o pq—A—v’

>
1

- - Quasi-regular pattern of shear layers
and profile corrugations

of shear flows |
f f \/ J*

-

. - Region of theextent A > A,
interspersed by temp. corrugation/ExB jets

Turbulence dnve: R,

okt -
- 10 140 160 a0

Normalised radius: /1, -> ExB staircases
Atmospheric Jets |
I f ‘) ' { : - so-named after the analogy to PV staircases
| J oo™ \ /8 and atmospheric jets

- Step spacing = avalanche outer-scale
[from Dunkerton et al. 2008)



ExB Staircase (2)

e Important feature: co-existence of shear flows and avalanches

Turbulence drive: R/,

80 100 120 140
Normalized radius: r/ P,

- Seem mutually exclusive ?!7?

— strong ExB shear prohibits transport

— avalanches smooth out corrugations

- Can co-exist by separating regions into:

1. avalanches of the size A > A,

2. localized strong corrugations + jets

e How understand the formation of ExB staircase???

- What is process of self-organization linking avalanche scale to ExB step scale?

i.e. how explain the emergence of the step scale ???



Staircases build up from the edge
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Corrugation points and rational surfaces — no relation!
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Towards a model

e How do we understand quasi-regular pattern of ExB staircase, generated from stochastic
heat avalanche???

e An idea: jam of heat avalanche

corrugated profile «> ExB staircase "X

— accumulation of heat increment

—> corrugation of profile occurs by - stationary corrugated profile
‘jam’ of heat avalanche flux

* —> time delay betweenQ[éT]and 6T s
is crucial element - _;-'é-i‘:h}

like drivers’ response time in traffic

e How do we actually model heat avalanche ‘jam’ ??? = origin in dynamics?



£

Traffic jam dynamics: ‘jamiton’

e A model for Traffic jam dynamics - Whitham

pt+ (pv)z =0
( )m P —> car density
1 v
Ut + VVz = T T v—V(p)+ ;Pa: U S traffic flow velocity
Vip) — Zp

- Instability occurs when - V/(ngo’z) P z - an equilibrium traffic flow

Desr =v — Tpgvo'z < (0 - clustering instability T > driver sresponse time
- Indicative of jam formation
e Simulation of traffic jam formation

Jamitons in Traffic Flow t=340s — simutaton http://math.mit.edu/projects/traffic/
: - Jamitons (Flynn, et.al., " 08)

. JLLU n.b. .V.P. = decay study
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Heat avalanche dynamics model ( the usual’)

Hwa+Kardar * 92, P.D. + Hahm ’ 95, Carreras, et al. 96, ... GK simulation, ... Dif-Pradalier * 10

e 4T :deviation from marginal profile - conserved order parameter

e Heat Balance Eq.: 8,67 + 9,.Q[67] =0 - up to source and noise

e Heat Flux QI[é77 — utilize symmetry argument, ala’ Ginzburg-Landau

- Usual: - joint reflectional symmetry (Hwa+Kardar’92, Diamond+Hahm ’95)

Q = Qo(dT)
A\ N €Tr < —X 2 *

hyperdiffusion

lowest order - Burgers equation 06T + NOT 06T = x2026T



An extension of the heat avalanche dynamics

e An extension: a finite time of relaxation of @ toward SOC flux state

8.Q = (@~ Qu(oT) QolsT] = 58T — X20,6T + x4030T

- Inprinciple  7(67,Qo)  <=> |arge near criticality (~ critical slowing down)

i.e. enforces time delay between 67" and heat flux

* Dynamics of heat avalanche: n.b. model for heat evolution

86T + AST 80T = x2828T — x4026T — 17026T diffusion - Burgers - Telegraph

- Burgers 1

(P.D. + T.S.H. ’ 95) - .
New: finite response time

— Telegraph equation



Relaxation time: the idea

e What is ‘T ’ physically? — Learn from traffic jam dynamics

e A useful analogy:

heat avalanche dynamics traffic flow dynamics
temp. deviation from marginal profile local car density
heat flux traffic flow
mean SOC flux (ala joint relflection equilibrium, steady traffic flow
symmetry)
# heat flux relaxation time driver’s response time

- driver’s response can induce traffic jam
- jam in avalanche - profile corrugation - staircase?!?

- Key: instantaneous flux vs. mean flux



Heat flux dynamics: when important?

1
e Heat flux evolution: 6tQ — — (Q — QO) — time delay, when important?
Tmix
Conventional Transport Analysis New approach for transport analysis
Tz <K time scale of interest - mixing time can be long, so
— Heat flux relaxes to the mean time scale of interest
value immediately Tmiz ~ !
— Heat evo. and Profile evo. must be
Q = Qo treated self-consistently
— Profile evolves via the mean flux
O Q) = _%(Q — QO)
T + 0,Q0 =0 ool + &,;Q[cST] =0
then
gite. 0T = X&%T then telegraph equation:

Burgers 9,67 4+ A\0T 90T = x2026T 00T + NT 06T = x20°8T — 7O*6T




Time delay: microscopic foundation?

e Relaxation by plasma turbulence = mixing of phase space density

d_J; = 0= 9, (6f(1)5f(2)) + 1,

d Tmzx

(0F(1)f(2)) = =(0r6 ) (f)

turbulent mixing production

hase space density correlation = . .
P P Y due gradient relaxation

‘ohasetrophy’ l,
i.e. PV mixing time sets delay

e Energy moment leads to heat flux evolution equation (Gurcan '13)

1

0Q = — (Q — QO) Qo = —Xturb VI

Tmzx
— Heat flux relaxes toward the mean value, in the mixing time

The delay time is a natural consequence of phase space density mixing. The
delay time is typically in the order of mixing time.



Brief summary on model extension

Usual:

Extended:

Heat Flux

Profile evo.

Q = Qo[dT"

O0:0T + NOT 00T = x2020T

Diffusion

Burgers

telegraph

0:Q = @Q — Qo) ;6T + N6TO,0T = x2026T

finite response time

- Physical idea: analogy to traffic dynamics, drivers’ response time

- Microscopic foundation: mixing of phase space density

- Finite response time - Heat dynamics described by telegraph eqn.

- Wavy feature, speed determined by /x,/t



Analysis of heat avalanche dynamics via telegraph

e How do heat avalanches jam? 0Ty

e Consider an initial avalanche, > Ug
with amplitude 675,
propagating at the speed vy = AdTy

— turbulence model dependent
e Dynamics:
OOT + 090y 0T = x20206T — x4026T — 7O26T
X2
ulse \ \/ ‘Heat flux wave’: —
P telegraph - wavy feature
two characteristic propagation speeds

— In short response time (usual) heat

/\_} /\/\/\_) flux wave propagates faster

" — In long response time, heat flux wave
0 becomes slower and pulse starts overtaking.
What happens???

>0
N



Analysis of heat avalanche jam dynamics

e In large tau limit, what happens? - Heat flux jams!!

e Recall plasma response time akin to driver’s response time in traffic dynamics

* negative heat conduction instability occurs (as in clustering instability in traffic jam dynamics)

Jamitons in Traffic Flow t=340s —simulation
== theory

86T + v00,0T = xgagﬁ’ — X43§gf’ — 7'3,:237’
—> (e — ’1’37)833?1: — x46iﬁ“

<0 when overtaking

.y

-~ Lo R
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- clustering instability

1km 2km 3km 4 km 5 km position

n.b. akin to negative viscosity instability of ZF in DW turbulence

instead ZF as secondary mode in the gas of primary DW

=>» Heat flux ‘jamiton’ as secondary mode in the gas of primary avalanches



Analysis of heat avalanche jam dynamics

e Growth rate of the jamiton instability

2 2 2
7:_21 + 21 \/7‘—;—1 — 272 k2 (1_|_X4k ) r:\/{47'xzk:2 (1—|—X;k ) —1} + 16v3 k272
T T X2 2

e Threshold for instability

X2 (1 N X4k2> nb. 1/7=1/7[&

> -
v X2 — clustering instability strongest near criticality

— critical minimal delay time

e Scale for maximum growth

2

~ X2 [ X4Y( O X2 2
k2 —= f /y 6 4 2 UOT
3 rom ——O :>87' 416 4+ 47 k+2 k+1——:()
e Ok? X2 X X2 X2

> staircase size, A2, . (6T) , 6T  from saturation: consider shearing



Scaling of characteristic jam scale

e Saturation: Shearing strength to suppress clustering instability

Jam growth - profile corrugation - ExB staircase - U}}Jx B

1 |

— estimate, only

T 1
- saturated amplitude: or X4

1; VthiPi N T

e Characteristic scale

2Vth;
T

A? ~ k26T ~ Pir/X2T X2 ™~ Xneo

- Geometric mean of  p; and /x27 :ambient diffusion length in 1 relaxation time

- ‘standard’ parameters: A ~ 10A,



Jam growth qualitatively consistent with staircase formation
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Aside: FYI| — Historical Note

——> Collective Dynamics of Turbulent Eddy
— ‘Aether’ | — First Quasi-Particle Model of Transport?!

/- l... A007
XLV. On the Propagation of Laminar Motion through a tur-
bulently moving Inviscid Liquid. By Sir WiLLIAM THOMSON,
LL.D., F.R.8.*

1. IN endeavouring to investigate turbulent motion of water
between two fixed planes, for a promised communication

to Section A of the British Association at its coming Meeting
in Manchester, I have found something seemingly towards a
solution (many times tried for within the last twenty years)
of the problem to construct, by giving vortex motion to an
incompressible inviscid fluid, a medium which shall transmit
waves of laminar motion as the luminiferous @ther transmits
waves of light.

2. Let the fluid be unbounded on all sides, and let u, v, w
be the velocity-components, and p the pressure at (z, v, 2, ¢).

We have

Tr =0 . . . . . ),

* Communicated by the Author, having been read before Section A of
the British Association at its recent Meeting in Manchester.



21. Eliminating the first member fiom this equation, by

(34), we find d2 d2
a—;—é =§R2(T;§ . . . . . . (51)-
R? ~ <\72> Thus we have the very remarkable result that laminar dis-

turbance is propagated according to the well-known mode of
waves of distortion in a homogeneous elastic solid ; and

that the velocity of propagation is iggB, or about *47 of the
average velocity of the turbulent motion of the fluid.

Fig. 1.

— time delay between
Reynolds stress and
wave shear introduced
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— c.f. “Worlds of Flow”, O. Darrigol |




Summary

e A model for ExB staircase formation

- Heat avalanche jam = profile corrugation - ExB staircase

- model developed based on analogy to traffic dynamics - telegraph egn.

e Analysis of heat flux jam dynamics

- Negative conduction instability as onset of jam formation
- Growth rate, threshold, scale for maximal growth

- Qualitative estimate: scale for maximal growth A ~ 10A.,

—> comparable to staircase step size



Ongoing Work
* This analysis < set in context of heat transport

* |mplications for momentum transport? =>»

— consider system of flow, wave population, wave

momentum flux

— time delay set by decay of wave population

correlation due ray stochastization - elasticity

— flux limited PV transport allows closure of system



Results:
* Propagating (radially) zonal shear waves

predicted, as well as vortex mode

* For 7,4., larger, Z.F. state transitions to LCO,

rather than fixed point

* Tqeny due elastization necessarily impacts

dynamics of L->1->H transition



