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Outline

 What is oscillatory double-diffusive convection?

 Numerical simulations

 Mean-field theory for staircase formation

 Wave/mean-flow interaction for shear layer 

formation



 A fluid that exhibits a stable compositional gradient alone 

supports internal gravity waves.

 The addition of a small temperature gradient can destabilize 

the wave (even if the background density of the system 

remains stably stratified), as long as temperature diffuses 

more rapidly than composition

Oscillatory double-diffusive convection



Where is ODDC found? 

 On Earth: 

◦ Polar oceans: Melting ice releases cold/fresh water on top 

of warmer, saltier water.

◦ Volcanic lakes: Geothermal activity warms bottom of lake & 

releases methane/other dense gases below cold, fresh 

water.

◦ Oscillatory-unstable (but not very much, see later)



Where is ODDC found? 

 In Planetary Astrophysics:

◦ The core-accretion scenario for giant planet formation 

leads to an interior structure potentially unstable to 

oscillatory-convection near core-envelope interface.

Core formation Gas accretion



Governing equations (Boussinesq approximation, cf. Spiegel & 

Veronis):

 DD-convection scale much, much smaller than system scale, 

so the Boussinesq (ie. nearly-incompressible fluid) 

approximation is usually OK.
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Mathematical modeling

Model considered:

◦ Assume background temperature and concentration profiles are 

linear (constant gradients                   )

◦ Let

◦ Assume that all perturbations are triply-periodic in domain 

(Lx,Ly,Lz):

◦ This enables us to study the phenomenon with little influence 

from boundaries. 
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DT = LzT0z

DS = LzS0z



Governing non-dimensional equations:

Mathematical modeling
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Linear stability analysis: 

 Assume all perturbations are of the form 

 Resulting equation for growth rate is a cubic

where coefficients are functions of 

 Properties of the modes of instability

 Fastest-growing mode is vertically invariant, horizontal 

wavelength is of the order of “a few d” 

 Range of instability is 

 Mode is oscillatory

 For weak stratification (near overturning convection), λR

>>λI

 For strong stratification (close to marginal stability) λR <<λI

Linear theory (basic instability)

  

q(x,y,z,t) = ˆ q eik×x+lt

  

l3 + al2 + bl + c = 0
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1.14 in ocean, 

O(103-6) in astro



Linear theory (basic instability)

Overturning convection

S0z = 0

S0z < 0

Stable system

  

 Tz = Tz

ad

   

R0

-1 =
Pr+1

Pr+ t

Stable system

Overturning 

convection

Double-

diffusive 

convection

  

      R0

-1 =1

   

T0z

   

T0z

R0

-1 =
bS0z

a(T0z -T0z

ad )



Outline

 What is oscillatory double-diffusive convection?

 Numerical simulations

 Mean-field theory for staircase formation

 Wave/mean-flow interaction for shear layer 

formation

100d x 100d x 100d

Ra = 108

Pr = τ= 0.01 or 0.03



Numerical simulations

Example of oscillatory convection close to onset of overturning 

convection (more unstable case)

Mirouh, Garaud, Stellmach, Traxler & Wood 2013

   

Nu =
Total flux

Diffusive flux

S field



Numerical simulations

Example of oscillatory convection close to marginal stability 

(more stable case)

Moll et al, in prep. 2014

S field u field



Numerical simulations

Two outcomes: layers & large-scale gravity wave, with very 

different transport properties.
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Numerical simulations

In fact, we always see these two types of solutions. 
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Numerical simulations

Schematically: 

Overturning convection
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Pr+ t

Overturning 

convection
Double-diffusive 

convection
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Very 
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Mixing
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(negligible
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No Mixing

Layered Not layered (wave-like)

Moderate 
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dependent
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Mean-field theory for layer formation

 The emergence of staircases in DD convection can be 

understood using “mean-field” theory (Radko 2003)

 General idea: large-scale structures form through positive 
feedback between large-scale temperature/composition 
perturbation and induced fluxes.

 Different feedback loops can lead to different “mean-field” 
instabilities, e.g. layering instability, large-scale gravity wave 
excitation, intrusive instability (Traxler et al. 2011)

Large-scale 

temperature, 

solute 

perturbations

Perturbations in 

local  inverse 

density ratio 

Perturbations in 

turbulent fluxes



Mean-field theory for layer formation

 Horizontally-averaged, filtered equations (ignoring mean 

flow):

 Assume that

where FT and FS are only functions of other non-dimensional 

quantities:

and R-1 is the local inverse density ratio (a function of z)
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if the fluxes are known, the 
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evolution of large-scale 
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Mean-field theory for layer formation

 Summary of closed model 

 This set of nonlinear equations has a trivial solution
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Mean-field theory for layer formation

 Summary of closed model 

 This set of nonlinear equations has a trivial solution
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 Consider large-scale, small-amplitude perturbations to that 

state:

 The evolution of the compositional field is given by 

 To lowest order, 

Mean-field theory for layer formation
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Mean-field theory for layer formation

Radko’sγ-instability criterion: A necessary condition 

for the γinstability is that the flux ratio should be a 

decreasing function of density ratio

   

dg-1

dR-1
< 0

The layering instability 
triggers staircase 
formation 

 Modes of instability are 
horizontally invariant, 
vertically sinusoidal 
perturbations in 
temperature/composition/den
sity. 

 The mode overturns into a 
staircase when amplitude is 
large enough.



Comparison with simulations

Mirouh et al. 2012

 To test this theory:

◦ Measure flux ratio in homogeneous phase of ODDC

◦ Check the sign of 
dg -1

dR-1

Large symbols : 

simulations that 

exhibit layer-

formation.

Small symbols: 

simulations that do 

not.



Comparison with simulations

Mirouh et al. 2012

 To test this theory:

◦ Measure flux ratio in homogeneous phase of ODDC

◦ Check the sign of

◦ Pick a simulation, calculate predicted growth rate, compare 

with actual growth rate.

dg -1

dR-1
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 Numerical simulations
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 Wave/mean-flow interaction for shear layer 

formation

u field



Wave/mean-flow interactions: which 

one?

 Given that saturated ODDC consists in strongly dissipative, 

nonlinearly interacting gravity waves, the emergence of 

persistent shear flows is not surprising.. (cf. talk by Oliver)

 The question lies in origin of the mean flow. Is it: 

1. Large-scale ODDC mode + large-scale ODDC mode 

mean flow ? (e.g. can be described by reduced system of 

fully nonlinear equations)

2. Small-scale ODDC modes  mean flow (e.g. can be 

described by mean-field instability)

3. Large-scale sheared ODDC mode  Reynolds stresses 

mean flow (e.g. can be described by quasilinear theory) 



 In all that follows, we 

define:

 Example of a flow 

dominated by mode                  

:  

Definition

k = (l, m, k)

ln =
2p

Lx

n,  mn =
2p

Ly

n,  kn  =
2p

Lz

n 

k = (l1, 0,k2 )

Shearing modes have a 

structure of the kind k = (0,0,kn )



The kinetic energy in the shearing modes grows exponentially 

with nearly constant growth rate for a long time…

Energies

Note drop 

in heat 

flux



Mean-field instability? 

By analogy with the γ-instability: 

 Horizontally-averaged, filtered equations (ignoring 

composition):

 Assume that

Where NuT and the new function σnow depend both on the 

inverse density ratio R-1 and local non-dimensional shearing 

rate:

End up “proving” that shear can grow provided  
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Mean field instability ? 

Testing the theory:

 Slight problem: by contrast with layering case, we do not 

have a code that can easily maintain a constant background 

shear to measure       in idealized homogeneous sheared

ODDC. 

 Alternative solution: start from a simulation already in 

homogeneous ODDC, and gradually increase (periodic) 

shear using external forcing. 

s (V )



Mean field instability ? 

Testing the theory:

 Slight problem: by contrast with layering case, we do not 

have a code that can easily maintain a constant background 

shear to measure       in idealized homogeneous sheared

ODDC. 

 Alternative solution: start from a simulation already in 

homogeneous ODDC, and gradually increase (periodic) 

shear using external forcing. 

s (V )

Without shear With shear



Mean field instability ? 

Testing the theory:

 At each position in space, each snapshot in time, measure         

and

s (z)

V (z)

s (z)

V (z)

Possible range of instability



Mean field instability ? 

Testing the theory:

 For small enough shearing rate, it looks like the “σ-”instability 

can be excited. 

 Since           is more or less constant in that range, this 

explains why the growth rate of shearing mode is constant. 

 Instability has self-regulating properties

✗ The growth rate of the (0,0,k2) mode is observed to be the 

same as (0,0,k1) which contradicts the “anti-diffusive” nature 

of instability. 

✗ Theory needs to be tested further by (1) measuring         more 

systematically and (2) calculating the actual mode growth 

rates & comparing them with simulations. 

¶s ¶V
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Quasilinear theory ?

Idea:

Shear flow modifies 

basic ODDC 

instability

Reynolds stresses 

induced by 

perturbations 

accelerate shear 

flow.



 For sinusoidal “background” shear of the kind

we can use Floquet theory to calculate properties of the 

perturbations.

u = u0 sin(k1z)ex

Quasilinear theory ?
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We find that for 

observed shearing 

rate in full 3D 

simulation, “sheared” 

mode growth rates 

similar to basic mode 

growth rate.

Note that growth rates 

are invariant for 
l«-l



For “large” shearing 

rates, the perturbation 

are localized in region 

of little shear.   z



Quasilinear theory ?

 To see if mode can amplify background shear: 

Nonlinear term 

strictly positive 

for a wide 

range of l!



Quasilinear theory ?

Slight problem with the theory:

 Within the scope of the quasilinear theory (so far)

◦ Growth rate symmetric in l

◦ Nonlinear term antisymmetric in l

◦ We expect as many modes with positive l and negative 

l, and the total effect of Reynolds stresses should 

cancel out.  
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Quasilinear theory ?

 However: the nonlinear terms in actual simulation are clearly 

mostly positive the whole time so positive l modes are 

preferred.

 Question: What causes the asymmetry?

Note: this question is directly related to

Why is            for small    ? 

¶s

¶V
> 0 This remains an open 

problem …

V



Summary 

 ODDC exhibits examples of strong interactions between 
small-scales and large-scales.

 Mean-field theory (theγ–instability) satisfactorily explains 
layer formation for weakly stratified ODDC systems

 Shear layers are observed to form in low Pr, “strongly” 
stratified ODDC systems

 Candidates for shear layer formation have been identified:

◦ “ σ–instability” (requires scale separation between large 
and small scales)

◦ Quasilinear theory (does not require scale separation)
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Summary

Both kinds of mean-

field/mean flow 

instabilities have 

important implications 

for giant planet 

structure, evolution, 

dynamics.



Note: similar dynamics are seen in fingering convection, but 

only in 2D (not in 3D)… why that is the case is another 

interesting question!

Final side-note

Garaud & Brummell, in prep. 





Backup slides



Weakly nonlinear theory ?



Weakly nonlinear theory ?

Requires matching of spatial mode structure:

Examples of “triplets”: 

k
(1) +k(2) = k(S ) ®

l (1) + l (2) = 0® l (2) = -l (1)

m(1) + m(2) = 0®m(2) = -m(1)

k (1) + k (2) = k (S )

l1
(1), 0, k-2

(1)( ) + l-1

(2), 0, k3

(2)( ) = 0, 0, k1

(S)( )
l1

(1), 0, k-1

(1)( ) + l-1

(2), 0, k2

(2)( ) = 0, 0, k1

(S)( )



Weakly nonlinear theory ?

Oscillation frequencies do not match, but this is not a 

problem given that this is not a steady-state shear 

flow. In fact, we expect that  from

Ubar should grow (more or less) with sum of growth 

rates of modes (1) and (2):
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Weakly nonlinear theory ?



Weakly nonlinear theory ?



Weakly nonlinear theory ?



Weakly nonlinear theory? Probably not.

Oscillation frequencies do not match, but this is not a 

problem given that this is not a steady-state shear 

flow. In fact, we expect that  from

Ubar should grow (more or less) with sum of growth 

rates of modes (1) and (2):

Problem : none of the observed triplets seem to work 

out…  
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