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1. INTRODUCTION

Length scales

In large Reynolds number turbulence, motion occurs on a wide
range of length scales varying from the large size L of the system
down to the very short length viscous length scale lν (� L).
Only on that latter length lν is viscous dissipation important.

For buoyancy driven MHD systems the problem is complicated
by the fact that there are in addition other dissipation lengths such
as the thermal and magnetic diffusion length scales lκ and lη,
which may be of very disparate values depending on the Prandtl
numbers ν/κ and ν/η.

When the scale range between L and lmax ≡ max (lν , lκ, lη)
is very large, it remains problematic, how to deal with the
intermediate length scales l . It is this range, lmax � l � L,
that has motivates our enquiry and to which we restrict attention.
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Lagrangian representation: Advection

In rotating MHD systems, it is well known that the Lagrangian
(rather than the Eulerian) representation can often be used
very effectively, when l � lmax.

The idea is most readily appreciated in the context of the
advection without diffusion of a passive scalar quantity
such as temperature, for which its material derivative vanishes.
Then the temperature remains constant following fluid particles.

Likewise in the case of magnetic field in a perfectly conducting
fluid, magnetic flux through material surfaces is conserved.
By implication the magnetic field at a point moving with the fluid
is readily derived in the Lagrangian framework simply by properties
of the coordinate transformation relating the current position xLN

of a fluid particle to its original position x.
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Lagrangian representation: Momentum

The properties mentioned are kinematic in nature and ultimately
provide a useful description of the advected quantities. To
determine their temporal evolution, we take advantage of the
frozen field results when considering the equation of motion.

The simplest application of the idea is through the investigation
of the stability of a static state. Since the pressure gradient in the
equation of motion does not transform nicely from a Lagrangian
point of view, it is better to consider the equation of motion in its
Eulerian form.

The Eulerian perturbation values of frozen quantities like the
magnetic field, which appear in the equation of motion, are
determined from their Lagrangian description in terms of the small
fluid particle displacement ξLN = xLN − x. In this way, equations
like the temperature and magnetic induction equations are
bypassed leaving only an equation governing ξLN.
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Hybrid Eulerian–Lagrangian (HEL) representation

In turbulence, the fluid particle displacement ξLN generally
increases indefinitely. Even so the Lagrangian procedure has been
adopted and used to obtain Eulerian values (of say the transport of
a passive scalar) at quadratic order in the displacement, valid over
a limited period of time. Then averaging may be used to
determine the evolution of the Eulerian mean quantities, usually
under some assumption such as a short correlation time.

Even when |ξLN| diverges, it may happen that the path
displacements ξ (6= ξLN) of particles from their mean flow
trajectories though finite remain of moderate size as exemplified by
wave turbulence riding on a sheared mean flow. Then the hybrid
Eulerian–Lagrangian (HEL) approach, developed by Soward (1972)
in the dynamo context and Andrews & McIntyre (1978a) in the
atmospheric science context, provides a good way of addressing
the evolution of the mean fields correct to O(|ξ|2).
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2. TENSOR CALCULUS

Coordinate transformations

Consider the mapping of a point P: x to a point PL: xL (= x + ξ)
through a displacement ξ(x). We write T ∗L(x) ≡ T ∗(xL(x)), for
scalar, vector and tensor quantities T ∗(x) evaluated at PL rather
than P. If instead we regard xL

i 7→ xi as a coordinate
transformation, we introduce T (x), which is related to T ∗L(x) by(

T ∗A···DE···G
)L

= J w (∇L
E xe) · · · (∇L

Gxg ) T a···d
e···g (∇axL

A) · · · (∇dxL
D)

for mixed tensors of weight w, where J =‖∇xL‖ is the Jacobian,

∇L
j ≡ ∂/∂xL

j , ∇i ≡ ∂/∂xi ;

we distinguish contravariant (upper index), covariant (lower index)
tensors.
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Cartesian examples

Regarding xi as the Cartesian coordinates of a point P and xL
i as

the Cartesian coordinates of a point PL, we provide illustrations of
the general tensor transformations.

For temperature θ∗ (w = 0) and density ρ∗L (w = −1), we have

θ∗L = θ J ρ∗L = ρ .

For velocity u∗ (contravariant, w = 0) and mass flux m∗

(contravariant, w = −1), we have

u∗L = u · ∇xL , Jm∗L = m · ∇xL .

NOTE that we will modify this definition for time dependant
coordinates xL(x, t).

For momentum per unit mass V∗ (covariant, w = 0), we have(
u∗L =

)
V∗L = (∇Lx) · V .
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Lie derivatives

The Lie derivative is(
LηT

)ab···d
ef ···g ≡ (η · ∇) T ab···d

ef ···g − T
jb···d
ef ···g (∇j ηa) − · · ·

− w (∇j ηj) T ab···d
ef ···g + (∇e ηj)T ab···d

jf ···g + · · · .

Relative to Cartesian coordinates some special cases are

Lηθ = η · ∇ θ w = 0

Lηρ =∇ · (ρη) w = −1

Lηu = [η , u ] ≡ η · ∇u − u · ∇η contra., w = 0

= −∇× (η × u) − (∇ · η) u + (∇ · u)η ,

Lηm = [[η , m ]] ≡ [η , m ] + (∇ · η) m contra., w = −1

= −∇× (η ×m ) + η (∇ ·m) ,

LηV = {η , V } ≡ η · ∇V + (∇η) · V co., w = 0

= −η × (∇× V ) + ∇(η · V) .
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3. EULERIAN APPROACH

Wave turbulence on shear flows

Braginsky (1964) considered a geodynamo model, which serves to
exemplify how the HEL method.

He considered a predominantly mean axisymmetric azimuthal
motion, velocity u∗, density ρ∗ of electrically conducting fluid
permeated by almost aligned magnetic field b∗, to which we add
scalar fields θ∗ such as temperature, with mean values b∗, θ∗. He
then envisaged a secondary non-axisymmetric wave motion,
velocity u∗′ riding on that primary flow:

u∗(x, t) = u∗ + u∗′ , ρ∗(x, t) = ρ∗ + ρ∗′ ,

b∗(x, t) = b∗ + b∗′ , θ∗(x, t) = θ∗ + θ∗′ .
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The Frieman & Rotenberg approach

Braginsky’s Eulerian approach is captured best using a formalism
developed by Frieman & Rotenberg (1960), by which the
fluctuating velocity is expressed in the exact form

u∗′(x, t) = DFR
t ζ − ζ · ∇u∗ = ∂tζ − Lζu∗ , (1)

DFR
t ≡ ∂t + u∗ ·∇ , Lζu∗ =

[
ζ , u∗

]
,

where ζ (closely related to ξ) has no mean part

ζ = 0 .

With diffusion and terms quadratic in the fluctuations neglected,
we have the approximate results

θ∗′(x, t) ≈ −Lζθ∗ = − ζ · ∇θ∗ , (2a)

ρ∗′(x, t) ≈ −Lζρ∗ = −∇ · (ρ∗ζ) , (2b)

b∗′(x, t) ≈ −Lζb∗ = ∇× (ζ × b∗) . (2c)

for the fluctuations themselves.
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4. HEL

The HEL construction (or time dependant coordinates)

The Eulerian form (1), (2a-c) contains the rudiments of the HEL
construction, in which ζ may be interpreted as the displacement
ξ (≈ ζ) that determines the location of the perturbed azimuthal
magnetic field line as frozen to the fluid flow, i.e. the magnetic
field line at position P: x following the mean flow is moved to
PL : xL = x + ξ(x, t) at time t.

This viewpoint corresponds to the well known frozen field results

θ∗L = θ , J ρ∗L = ρ ,

J b∗L = b · ∇xL = b + b · ∇ξ .

Here the Jacobian J has the kinematic property

∂tJ = ∇ · (Jw) ; (3a)

w = w∗L · (∇Lx) ; w∗L = ∂tx
L = ∂tξ (3b,c)

is the velocity of the point PL : xL(x, t) at fixed x.
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Transformation of the time derivatives

Temperature:(
∂tθ
∗)L = ∂tθ − Lwθ , Lwθ = w · ∇ρ ,

Density:

J
(
∂tρ
∗)L = ∂tρ − Lwρ , Lwρ = ∇ · (ρw) ,

Magnetic field:

J
(
∂tb
∗)L · ∇Lx = ∂tb − Lwb , Lwb = [[ w , b ]] ,

Momentum:

(∇xL) ·
(
∂tV

∗)L = ∂tV − LwV , LwV = {w , V } ,
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Relative velocity

We transform the relative velocity v∗L = u∗L −w∗L (true velocity
u∗ less frame velocity w∗) and write

u∗L = v · ∇xL ,

w∗L = w · ∇xL ,

v = u + w

 ⇐⇒


u = v∗L · ∇Lx ,

w = w∗L · ∇Lx ,

v∗L = u∗L −w∗L .

In this way,

u∗L = w · ∇xL + u · ∇xL

= ∂tx
L + u · ∇xL = Dtx

L = u + Dtξ ,

where
Dt ≡ ∂t + u · ∇ , xL = x + ξ

should be interpreted as the material derivative associated with
HEL advection at P:x with velocity u.
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Ideal fluids

The introduction of the relative velocity leads to the invariant
structure of the ideal fluid equations involving advection.

Temperature:

∂tθ
∗ + Lu∗θ

∗ = 0 =⇒ ∂tθ + Luθ = 0 .

Density:

∂tρ
∗ + Lu∗ρ

∗ = 0 =⇒ ∂tρ + Luρ = 0 .

Magnetic field:

∂tb
∗ + Lu∗b

∗ = 0 =⇒ ∂tb + Lub = 0 .

Momentum:

∂tV
∗ + Lu∗V

∗ −→ ∂tV + LuV .
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Solenoidal conditions

To simplify matters we will restrict attention to constant density,
ρ∗0, solenoidal flow (also solenoidal magnetic magnetic field):

∇ · u∗ = 0 , ∇ · b∗ = 0 .

Evaluated at PL, they are

(∇ · u∗)L = 0 , (∇ · b∗)L = 0 ,

which become

∇ ·
(
J (u + w)

)
= 0 , ∇ · b = 0 . (4a,b)

For the special case of isochoric transformations J = 1,
(3a) and (4a) determine

∇ · u = 0 , ∇ ·w = 0 . (5a,b)
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Ideal fluid equations: Eulerian

For constant density ρ∗0, the ideal fluid equations, relevant to the
limit lmax � l � L, are

the heat conduction equation

∂tθ
∗ + u∗ · ∇ θ∗ = 0 , ∇ · u∗ = 0 ;

the magnetic induction equation

∂tb
∗ = ∇× (u∗ × b∗) , ∇ · b∗ = 0 ;

Euler’s equations equation(
∂tV

∗ + Lu∗V
∗ ≡

)
∂tV

∗ + u∗ · ∇V∗ +∇( 1
2 |u
∗|2) = −∇Π∗ ,

V∗ = u∗ , Π∗ = (p∗/ρ∗0) − 1
2 |v
∗|2 .with
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Ideal fluid equations: HEL

Each Eulerian equation evaluated at PL transform as follows:

(heat conduction equation)L

Dtθ = 0 , ∇ · (u + w) = 0 ;

J (magnetic induction equation)L·(∇Lx)

∂tb = ∇× (u× b) , ∇ · b = 0 ;

(∇xL)·(Euler’s equations equation)L(
∂tV + LuV ≡

)
∂tV + u · ∇V +∇( 1

2 |u|
2) = −∇Π ,

V = (∇xL) · u∗L , Π = Π∗L .where

Together with ∂tJ =∇ · (Jw), these are the hybrid
Eulerian-Lagrangian (HEL) equations governing the HEL variables
u(x, t), w(x, t), V(x, t), b(x, t) and θ(x, t) (see Soward 1972,
Andrews & McIntyre 1978 but also Roberts & Soward 2006).
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The Coriolis acceleration C∗ = 2Ω × u∗

Though the sum of the Coriolis and centrifugal accelerations
transform as a general tensor (covariant vector, w = 0) neither
does individually! Bearing in mind that limitation, we consider

C = (∇xL) · C∗L = (∇xL) · 2(Ω × u∗)L

= ∂tR + (2Ω + ∇×R)× u − ∇
(
(∂tξ) · (Ω × ξ)

)
,

where

R ≡ (I +∇xL) · (Ω × ξ)

= 2Ω × ξ + (∇ξ) · (Ω × ξ)

is NOT a covariant vector (w = 0), and in which

xL = x + ξ .
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5. ETHEL

The ETHEL construction

The HEL approach has the unfortunate feature that

the HEL variables T (x, t) define conditions at PL

rather than P, where the Eulerian variables T ∗(x, t) apply.

This shortcoming motivated Holm (2002) to search for an Eulerian
development which incorporated features of the HEL theory.

To address the matter, an Euler transformed HEL (ETHEL)
method was proposed in Soward & Roberts (2010) building on
Moffatt (1986). The strategy is to relate the HEL form, which is a
function of the Eulerian form T ∗L(x, t) = T ∗(xL(x, t), t) at PL,
to T ∗(x, t) at P via a Taylor expansion based on xL = x + ξ.

The direct expansion in ξ becomes unwieldy and cumbersome at
the O(ξ2) level needed to investigate the rôle of the fluctuations

T ∗′ = T ∗ − T ∗

on the mean values T ∗.
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Towards Lie dragging

To simplify matters, Soward & Roberts (2010) employed a
technique introduced by Moffatt (1986), whereby the mapping
x 7→ xL is achieved by dragging P to PL by a ‘fictitious steady flow’
η∗(x, t) in a unit of ‘fictitious time’ (0 ≤ τ ≤ 1; say). From it we
may define the contravariant vector η(x, t) (w = 0) implicitly by

η∗L = η · ∇xL

with the remarkable (to me!) property η∗ = η . .

Essentially the fictitious movement of P(τ = 0) to PL(τ = 1) is
achieved via intermediate points P`:x`(τ). Values linked to PL are
obtained by evaluating the Maclaurin series in τ at τ = 1. So, e.g.,

ξ(x, t) =η + 1
2 η · ∇η + · · · ,

J (x, t) − 1 =∇ · η + 1
2∇ ·

(
(∇ · η)η

)
+ · · · ,

w∗(x, t) = ∂tη − 1
2

(
η · ∇(∂tη) − (∂tη) · ∇η

)
− · · · .
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Lie dragging

These special Maclaurin series in τ provide the basis of a more
systematic Lie derivative Taylor series expansion of tensors T (x, t),
which may be identified with the technique of ‘Lie dragging’ :

T = T ∗ + Lη T ∗ + 1
2

(
Lη

)2 T ∗ + · · · ,

in terms of T ∗(x, t) with inverse

T ∗ = T − Lη T + 1
2

(
Lη

)2 T − · · · .

Some explicit forms are

θ∗ = θ − Lη θ + 1
2

(
Lη

)2
θ − · · · , (also Π∗),

b∗ = b − Lη b + 1
2

(
Lη

)2
b − · · · ,

u∗ = V − Lη V + 1
2

(
Lη

)2
V − · · · ,

u∗ −w∗ = u − Lη u + 1
2

(
Lη

)2
u − · · · ,

u∗ = u− (−∂tη + Lηu) + 1
2Lη(−∂tη + Lηu)− · · · .



Outline Intro Tensors Euler HEL ETHEL MFE Mag diff Conclusions

The case J = 1

The value of w is linked by (3a) to J , which we may define at our
convenience. We choose the value J = 1 because of the obvious
simplifications. It was made in Soward (1972) but not in the other
pioneering study of Andrews & McIntyre (1978), who were
concerned with compressible flows for which allowing for the
possibility J 6= 1 is quite natural. That is why we have so far not
adopted the restriction J = 1 on admissible ξ.

Note that

1 = J (x, t) = 1 + ∇ · η + 1
2∇ ·

(
(∇ · η)η

)
+ · · ·

is then solved neatly by

∇ · η = 0 .
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The Coriolis contribution R to the momentum

Remember that the Coriolis acceleration C∗ = 2Ω × u∗ transforms
to

C = ∂tR + (2Ω + ∇×R)× u − ∇
(
(∂tξ) · (Ω × ξ)

)
,

so that

R = 2Ω × ξ + (∇ξ) · (Ω × ξ)

= Ω ×
(

2ξ +
(
(∇ · ξ) ξ − ξ · ∇ξ

))
− (Ω · ∇ξ)× ξ

may be regarded as an additional contribution to the momentum.

For ξ � 1, we have η = ξ − 1
2ξ · ∇ξ + · · · . When ∇ · η = 0, we

have ∇ · ξ = O(ξ2) as well. Then R reduces to

R = 2Ω × η − (Ω · ∇η)× η + · · · .
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6. MEAN FIELD EQUATIONS

Eulerian averages

The averages of the ideal fluid equations are

∂tu∗ + u∗ · ∇u∗ + ∇ ·
(

u∗′u∗′
)

= −∇ p∗ ,

∂tb
∗ = ∇× (u∗ × b∗) + ∇× (u∗′ × b∗′ ) ,

∂tθ∗ + u∗ · ∇ θ∗ + ∇ ·
(

u∗′θ∗′
)

= 0 ,

where ∇ · u∗ =∇ · b∗ = 0 and the fluctuating fields satisfy the
fluctuating parts of the ideal fluid equations. The fundamental
difficulty that must be faced is the evaluation of the mean

Reynolds stress u∗′u∗′, the mean electromotive force u∗′ × b∗′ and
the mean heat flux u∗′θ∗′, the determination of which lies at the
heart of all closure theories of turbulence.
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HEL mean

The key assumption (Andrews & McIntyre 1978), is that

u = u ,

the consequences of which are the ‘raison d’être’ for the use of the
complicated HEL formulation. This assumption is achieved on
requiring that the fluctuating part of the motion is encompassed
completely by the Lagrangian displacement ξ. Then the mean of
the ideal HEL equations are simply

∂tV + u · ∇V + (∇u) · V = −∇Π , (6a)

∂tb = ∇× (u× b) , Dtθ = 0 . (6b,c)

With dissipation ignored, (6b,c) and u = u imply

b = b , θ = θ (7a,b)

too.
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Of course, we have only identified the bare bones here, as other
physical processes, particularly diffusion, need to be included.
Then the assumed consequence (7a,b) needs to be reassessed.

Kelvin’s and Alfvén’s theorems

An interesting feature of the mean HEL ideal momentum equation
is the appearance of a momentum vector ρ0V different to ρ0u.

The mean HEL ideal momentum an magnetic induction
equations possess the useful conservation properties properties

d

dt

∮
C

V · dx = 0 ,
d

dt

∫
S

b · dS = 0 ,

namely Kelvin’s circulation and Alfvén’s frozen flux theorems,
for a circuit C(t) and a surface S(t) each composed of points,
whose HEL coordinates x move with velocity u(x, t).
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HEL – Generalized Lagrangian Mean (GLM): ξ = 0

To make any progress, assumptions need to be made about the
displacement field ξ. Andrews & McIntyre (1978a) developed their
Generalized Lagrangian Mean (GLM) approach under the natural
assumption

ξ = 0 =⇒ u∗L = u ,

which says that u is the average of the fluid velocity u∗L at the
moving HEL position xL. In the context of waves riding on a mean
flow, they identified the difference

u− V = − (∇ξ) · V∗L

which together with the Coriolis contribution

−R = − (∇ξ) · (Ω × ξ)

constitutes the pseudo- or wave-momentum p per unit mass.
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ETHEL – generalized lagrangian mean (glm): η = 0

Following an idea of Holm (2002), we develop a generalized
lagrangian mean (glm) approach under the ETHEL assumption

η = 0 =⇒ u∗L = u + Dtξ (8a,b)

so that u is no longer the Lagrangian mean velocity.

In consequence, there is a new pseudo-momentum:

p ≡ u− V − R = −Dtξ − (∇ξ) · V∗L − (∇ξ) · (Ω × ξ) .

Rememember that V∗ = u∗ and

ξ = η + 1
2η · ∇η + 1

3! (η · ∇)2η + . . . ,

Consideration of the ξ- expansion makes it clear that ξ has both
a mean and fluctuating part, ξ + ξ′, where specifically, for ξ � 1,

ξ ≈ ∇ · K , with K = 1
2 ηη .
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Constant density ρ∗0

An unfortunate consequence of the

‘GLM’ assumption ξ = 0,

in our incompressible context, is that it is impossible to demand
the vanishing of both ∇ · ξ and ∇ · u simultaneously:

∇ · ξ = 0

=⇒ J 6= 1 and ∇ · u 6= 0

in general (the divergence effect, e.g. McIntyre 1988).

Remember the Coriolis contribution

−R = − (∇ξ) · (Ω × ξ)

to the pseudo-momentum.
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The alternative

‘glm’ assumption, η = 0,

does not suffer this shortcoming and we may demand

∇ · η = 0

=⇒ J = 1 and ∇ · u = 0 .

Consideration of the ξ- expansion

ξ = η + 1
2η · ∇η + 1

3! (η · ∇)2η + . . . ,

makes it clear that, for for ξ � 1,

ξ ≈ ∇ · K , with K = 1
2 ηη .

Also the glm Coriolis pseudo-momentum contribution reduces to

−R = (Ω · ∇η)× η + · · · .
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Eulerian ←→ HEL ←→ ETHEL

Our overall strategy is to regard x as the independent variable.

HEL variables T concern conditions at PL : xL(x, t).
=⇒ GLM T also averages conditions at the moving point PL.

The essential ETHEL construction is

T ∗ = e−Lη T ⇐⇒ T = eLη T ∗ , (9a,b)

where eLη =
∑∞

0 (1/n!)(Lη)n.

The glm representation

T = eLη T ∗ = T ∗ + Lη T ∗′ + 1
2 (Lη)2 T ∗ + O(η3)

is the GLM T expanded in terms of Eulerian averages: Lη = 0,
in the sense that η is regarded like T ∗ as a property at P: x.

Remark. With difficulty, equations governing the glm expansions
can be derived directly from the original Eulerian equations for

T ∗ and T ∗′.
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ETHEL mean

The advantage of working with the GLM equations is clear for
those quantities that have the property

T = T i.e. T ′ = 0 .

In that case the ETHEL mean and fluctuating values

T ∗ = e−Lη T = T + 1
2 (Lη)2 T + O(η3) ,

T ∗′ =
(
e−Lη T

)′
= −LηT + O(η2) (10)

are readily obtained from (9a).

(10) is in accord with the Frieman & Rotenberg (1960) results
(2a-c):

T ∗′ = −LζT + O(ζ2),

where
ζ ≈ η , ζ = η = 0
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Implications of u = u

The assumption u = u and the consequences b = b and θ = θ
lead to simple ETHEL means exemplified by θ with Lie derivative
Lη = η · ∇:

θ∗ ≈ θ + ∇ ·
(
K ·∇ θ

)
, (11a)

θ ≈ θ∗ + ∇ ·
(
K ·∇ θ∗ + η · ∇ θ∗′

)
; (11b)

K = 1
2 ηη. (11a) has the advantage over (11b) in as much as the

term η · ∇ θ∗′ is not involved; though, of course, (11a,b) are
equivalent because from (10) we have

θ∗′ ≈ −η · ∇ θ ≈ −η · ∇ θ∗ .

Without the HEL construction the ETHEL consequence (11a)
would not have been quite so obvious.
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7. MAGNETIC INDUCTION

Finite magnetic diffusivity K

The magnetic induction equation,

∂tb
∗ = ∇× (u∗ × b∗ − J∗) , J∗ = K∇× b∗ ,

transforms to
∂tb = ∇× (u× b − J) ,

K−1J = (∇xL) · (∇× b∗)L = (g · ∇)× b − α · b ,

in which g is the contravariant metric tensor and α is akin to the
Christoffel symbol:

gij = (∇L
kxi )(∇L

kxj) ,

αij = (∇L
mxk)

(
εklj∇i − εilj∇k

)
(∇L

mxl)

= 1
2 (∇L

mxk)
(
εkli∇j + εklj∇i

)
(∇L

mxl) + 1
2 εijk∇l glk .
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Braginsky’s nearly symmetric dynamo

Relative to cylindrical polar coordinates (s, φ, z) we write

u∗ = u∗φ φ̂ + u∗′ + u∗M , u∗M = ∇×
(
ψ∗ φ̂

)
,

b∗ = b∗φ φ̂ + b∗′ + b∗M , b∗M = ∇×
(

a∗ φ̂
)
,

where · · · denotes the azimuthal average
(

(2π)−1
∫ 2π

0 · · · dφ
)
,

with the ordering

u∗′ = O
(
Rm−1/2 u∗φ

)
, u∗M = O

(
Rm−1 u∗φ

)
,

b∗′ = O
(
Rm−1/2 b∗φ

)
, b∗M = O

(
Rm−1 b∗φ

)
,

where, for typical azimuthal velocity U (u∗φ = O(U)) and length L,

Rm = LU/K � 1 .
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Mean Eulerian form

The mean field equations are

∂ta
∗ + s−1u∗M · ∇(sa∗) =

(
u∗′ × b∗′

)
φ

+ K∆1a∗ ,

∂tb∗φ + su∗M · ∇(s−1b∗φ) = sb∗M · ∇(s−1u∗φ)

+
(
∇×

(
u∗′ × b∗′

)
M

)
φ

+ K∆1b∗φ ,

where
∆1 ≡ ∆ − s−2 .

Recall that a∗ = O(LRm−1 b∗φ) and

u∗′ × b∗′ = O
(

Rm−1 u∗φ b∗φ
)

= O
(
|u∗M| b∗φ

)
= O

(
L−1 Rm |u∗M| a∗

)
which is unfortunately rather large!
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Braginsky dynamo in GLM form

Relative to cylindrical polar coordinates (s, φ, z) we write

u = uφ φ̂ + uM , uM = ∇×
(
ψ φ̂
)
,

b = bφ φ̂ + b′ + bM , bM = ∇×
(

a φ̂
)

with the ordering

u′ = 0, uM = O
(
Rm−1 uφ

)
,

b′ = O
(
Rm−3/2 bφ

)
, bM = O

(
Rm−1 bφ

)
,

with
η = O

(
LRm−1/2

)
.
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Neglect b′

With b′ neglected, the approximate GLM equations are

∂ta + s−1uM · ∇(sa) ≈ K (s−1ℵ bφ + ∆1a) , (12)

∂tbφ + suM · ∇(s−1bφ) ≈ sbM · ∇(s−1uφ) + K∆1b∗φ .

Here we have noted that −K−1× (LHS of (12)) is(
(∇xL) · (∇× b∗)L

)
φ

= s−1
(

(∂φxL) · (∇× b∗)L
)
φ

= (2πs)−1
∫ 2π

0

(
∇L × b∗L

)
· dxL(φ) i.e. at fixed (s, z) .

So the contribution from b∗L ≈ s−1bφ ∂φxL is

s−1
(

(∂φxL) · (∇L × s−1bφ ∂φxL)
)
φ
≈ − s−1 ℵ bφ ,

where
ℵ = (2πs)−1

∫ 2π
0

(
∇L × (∂φxL)

)
· dxL(φ) .
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glm form

At leading order the glm and GLM dynamo equations are the same.
The ETHEL relationships are

ψ ≈ ψ∗ + $ uφ , uφ ≈ u∗φ ,

a ≈ a∗ + $ bφ , bφ ≈ b∗φ ,

where
$ = − s−1 ηz ∂φηs ,

and

1
2ℵ = (∇Mηz) · ∇M(∂φηs) + s−2 (∂φηz)∂φ(∂φηs − ηφ) .
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8. Conclusions

The Main Objective has been to develop an Eulerian mean field
theory in the presence of large scale shear flows
at large Reynolds numbers.

It is well known that direct Eulerian averaging of the
governing equations is hard to implement in a helpful way
(as in the Braginsky dynamo).

The Lagrangian average applied to the HEL equations leads
to the useful GLM method.

HEL and GLM suffer the usual deficiency of all Lagrangian
methods that they are non-local.

glm recasts GLM in an Eulerian (local) setting. Whence the
use of the term Eulerian Transformed HEL (ETHEL).
In ths way the Main Objective is accomplished.
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Small versus large amplitude theories

The case ξ � 1.

The possible advantages of glm are self-evident.

The case ξ � 1.

The HEL (also ETHEL) method need to face up to difficult
problems linked to the non-uniqueness of the choice of ξ (also η).

Some of that lack of uniqueness is reduced by the requirement
ξ = 0 (also η = 0).

Nevertheless, the GLM (also glm) method is clearly still hard
to implement except in special cases and is the more likely to
be useful as a diagnostic tool.
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