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Geometric view of GLM and glm
Separation between mean flow and ‘waves’:

I simple mean dynamics,
I simple closure for the waves,
I interpretation of the mean flow, e.g. track particle motion.

Larangian averaging: Andrews & McIntyre’s GLM,

x = X(a) + ξ(X(a)), uL(X) = u(X + ξ(X)),

GLM is coordinate dependent:
I cannot add points, cannot add vectors at different points,
I x ∈M but X /∈M;∇ · u = 0 but∇ · uL 6= 0.

Take a geometric approach:
I avoid temptation of coordinate dependence;
I results valid on arbitrary manifolds.
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Geometric view of GLM and glm

Kinematics: ensemble of flow maps φ = φω : M→M.
Decompose flow maps into mean and perturbation

φ = ξ ◦ φ̄ .
Taking the time derivative

ξ̇ ◦ ξ−1 + ξ∗uL = u, where uL = ˙̄φ ◦ φ̄−1

ξ∗ is the push-forward: (ξ∗u)i(x) = (∂jξ
iuj)(ξ−1x).

Need a constraint on ξ to define φ̄:

I GLM (Andrews & McIntyre): ξ̄ = 0 , not geometric,

I glm (Soward & Roberts): ξ = eη for a vector field η with
η̄ = 0 and∇ · η,

I alternative: ξ∗ξ̇ = 0 , where ξ∗ is the pull-back.



GEOMETRIC GLM NEAR-INTERIAL WAVES COUPLED MODEL CONCLUSION

Geometric view of GLM and glm

Kinematics: ensemble of flow maps φ = φω : M→M.
Decompose flow maps into mean and perturbation

φ = ξ ◦ φ̄ .
Taking the time derivative

ξ̇ ◦ ξ−1 + ξ∗uL = u, where uL = ˙̄φ ◦ φ̄−1

ξ∗ is the push-forward: (ξ∗u)i(x) = (∂jξ
iuj)(ξ−1x).

Need a constraint on ξ to define φ̄:

I GLM (Andrews & McIntyre): ξ̄ = 0 , not geometric,

I glm (Soward & Roberts): ξ = eη for a vector field η with
η̄ = 0 and∇ · η,

I alternative: ξ∗ξ̇ = 0 , where ξ∗ is the pull-back.



GEOMETRIC GLM NEAR-INTERIAL WAVES COUPLED MODEL CONCLUSION

Geometric view of GLM and glm

Kinematics: ensemble of flow maps φ = φω : M→M.
Decompose flow maps into mean and perturbation

φ = ξ ◦ φ̄ .
Taking the time derivative

ξ̇ ◦ ξ−1 + ξ∗uL = u, where uL = ˙̄φ ◦ φ̄−1

ξ∗ is the push-forward: (ξ∗u)i(x) = (∂jξ
iuj)(ξ−1x).

Need a constraint on ξ to define φ̄:

I GLM (Andrews & McIntyre): ξ̄ = 0 , not geometric,

I glm (Soward & Roberts): ξ = eη for a vector field η with
η̄ = 0 and∇ · η,

I alternative: ξ∗ξ̇ = 0 , where ξ∗ is the pull-back.



GEOMETRIC GLM NEAR-INTERIAL WAVES COUPLED MODEL CONCLUSION

Geometric view of GLM and glm

Kinematics: ensemble of flow maps φ = φω : M→M.
Decompose flow maps into mean and perturbation

φ = ξ ◦ φ̄ .
Taking the time derivative

ξ̇ ◦ ξ−1 + ξ∗uL = u, where uL = ˙̄φ ◦ φ̄−1

ξ∗ is the push-forward: (ξ∗u)i(x) = (∂jξ
iuj)(ξ−1x).

Need a constraint on ξ to define φ̄:

I GLM (Andrews & McIntyre): ξ̄ = 0 , not geometric,

I glm (Soward & Roberts): ξ = eη for a vector field η with
η̄ = 0 and∇ · η,

I alternative: ξ∗ξ̇ = 0 , where ξ∗ is the pull-back.



GEOMETRIC GLM NEAR-INTERIAL WAVES COUPLED MODEL CONCLUSION

Geometric view of GLM and glm
Dynamics: 3D Euler, in terms of the velocity one-form υ = u[ ,
dual to u (wrt a metric),

∂tυ + Luυ = −dπ, i.e.,
d
dt

(φ∗υ) = −d (φ∗π) .

Kelvin’s circulation theorem follows:∮
φC0

υ =

∮
C0

φ∗υ = const.

Averaging leads to a mean-circulation theorem∮
ξ(φ̄C0)

υ =

∮
φ̄C0

ξ∗υ =

∮
φ̄C0

υL = const.

The circulation of the Lagrangian-mean one-form υL = ξ∗υ
along contours moving with velocity uL is conserved:

∂tυ
L + LūLυL = −d(· · · ) .
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Geometric view of GLM and glm

Wave-mean flow interaction = relation between uL and vL.

Pseudomomentum: p = υL −
(
uL
)
[

.

Simple relation if uL = ξ∗u so that p = ξ∗u[ −
(
ξ∗u
)
[
:

I GLM: uL(x) = u(x + ξ(x)) is a coordinate dependent
version,

I glm: uL 6= ξ∗u,
I alternative: uL = ξ∗u, but mean drifts from ensemble (for

u = O(ε), ξ grows secularly).
Soward & Robert’s glm appears to be a good compromise.

In practice, need to use coordinates and work pertubatively:
u = ū + εu′ and use Lie-series (cf classical averaging).
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Near-inertial waves
Inertia-gravity waves: fast waves with dispersion relation

ω = ±(f 2 + N2k2/m2)1/2 or ω = ±f (1 + r2
dk2)1/2

with rd radius of deformation (= NH/(nfπ)).

Oceanic inertia-gravity waves important for:
I vertical motion⇒ biology,
I vertical shear, instability, turbulence⇒ diapycnal mixing,
I mixing⇒ pollutant dispersion,
I large-scale ocean circulation, through diapycnal mixing

(Munk & Wunsch 2009) and dissipation (Gertz & Straub
2009).

Sources: tides, topography, winds. . .
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Near-inertial waves
Inertia-gravity-wave spectrum is dominated by lowest
frequencies: near-inertial waves, NIWs:

ω ≈ f , k/m� N/f , krd � 1.
ANRV365-FL41-14 ARI 12 November 2008 15:9
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Figure 1
Kinetic energy spectral estimates for instruments on a mooring over the Mid-Atlantic Ridge near 27◦N (Fu
et al. 1982). The inertial, principal lunar semidiurnal M2, and diurnal O1, K1 tidal peaks are marked, along
with the percentage of kinetic energy in them and the kinetic energy lying between f and the highest
frequency estimate. Least-squares power-law fits for periods between 10 and 2 h and for periods lying
between 100 and 1000 h are shown. The approximate percentage of energy of the internal wave band lying
in the inertial peak and the M2 peak is noted. In most records, the peak centered near f is broader and higher
than the one appearing at the M2 frequency. When f is close to the diurnal frequency, it is also close to
one-half the frequency of M2, when the parametric subharmonic instability can operate. Some spectra show
the first overtone, 2 M2 of the semidiurnal tide. Instrument at (a) 128 m, (b) 1500 m, and (c) 3900 m (near the
bottom). The geostrophic eddy band is greatly reduced in energy near the bottom, as is the inertial band,
presumably because of the proximity of steep topography. Note the differing axis scales.

(where σ is the radian frequency, and q is an empirical constant), which we call the geostrophic
eddy range. A conspicuous inertial peak exists at σ ≈ f, where f = 2" sin θ is the Coriolis fre-
quency equal to twice Earth’s rotation period " multiplied by the sine of the latitude, θ , and sepa-
rates the geostrophic eddy band from higher-frequency nongeostrophic motions.2 At frequencies
σ > f, there is another approximate power-law band usually identified as internal waves. A number
of other features, especially tidal lines, appear in most of the records (discussed below). In all

2In this review, as in the oceanographic literature, the term inertial waves refers to those waves in a stratified rotating fluid
with radian frequency σ ≈ f. They should be distinguished from the alternative use in rotating nonstratified fluids as waves
with 0 ≤ σ ≤ f (e.g., Chandrasekhar 1968). Here internal waves denote those motions f ≤ σ ≤ N, which include inertial waves
as a special case. Analogous motions exist in fluids for which N ≤ σ ≤ f, including N = 0, but such conditions are almost
nonexistent in the ocean.
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Figure 2
(a) Kinetic energy estimate for an instrument in the western North Atlantic near 15◦N at 500 m. In this
record, the diurnal tides are well separated from the inertial frequency. This record was described by Fu et al.
(1982). (b) Power density spectral estimate from a record at 1000 m at 50.7◦S, 143◦W, south of Tasmania in
the Southern Ocean (Phillips & Rintoul 2000). Now the diurnal tides are below f in frequency, but whether
the apparent peaks represent dominantly barotropic or baroclinic motions is not known.

cases, there is a sample time average velocity ū, v̄, with a KE, 1/2(ū2 + v̄2), that is commonly
indistinguishable from zero in open ocean records.

Frequencies σ < f are thought to be almost completely geostrophically balanced at least below
the surface boundary layers,3 whereas those f < σ < N are controlled by gravity wave dynamics.
The transitional inertial peak is dominated by gravity wave physics strongly modified by rotation,
and with important effects from the latitudinal variation, β = R−1df/dθ , where R is Earth’s radius.
Frequencies σ > N are thought to be primarily small-scale turbulent motions resulting from
breaking of the lower-frequency internal waves.

Much fluid physics is known not in the context of frequency, but rather in the context of wave-
number spectra. Only a few wave-number spectral estimates of ocean variability exist (e.g., Katz
1975, Stammer 1997) and tend, qualitatively, to be red (i.e., with energy generally increasing with
wavelength) without the distinctive features seen in the frequency domain. Theory suggests a major
overlap in the wave-number domain of the different timescales seen in the displayed frequency
spectra. Frequency-wave-number spectra are required to delineate space scales, and thus much
theoretical discussion (see below) of energy transfers in wave-number cascades tends to be highly
speculative because measurements capable of producing frequency-wave-number separation are

3Geostrophy results from near-exact balance between the Coriolis force and the pressure gradient force. At the ocean surface
(at which air-sea fluxes are strong and velocities large), frequencies σ < f are still nearly balanced, but the condition involves
more forces.

256 Ferrari ·Wunsch
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Kinetic energy from current meters at 27◦ N (150, 1500, 4000 m), 15◦ N (1000
m) and 50◦ S (1000 m; Fu et al 1983; Phillips & Rintoul 2000; Ferrari &
Wunsch 2009).
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Near-inertial waves

About 50% of wave energy in NIWs:
I generated by winds (low frequency)

affecting the mixed layer (k/m� 1),
I f lowest frequency available for

resonant interactions,
I subharmonic instability of M2 tide.

Alford 2003

is used here to correct the NCEP fluxes in both hemi-
spheres. The REMO and corrected NCEP fluxes agree well
at all latitudes (Figure 3e). Since this factor also works well
with NE Pacific NCEP/buoy comparisons (not shown), the
northern fluxes presented here are considered reliable. (The
data-poor high-southern-latitude NCEP winds are less so,
allowing the possibility that the fluxes there are under-
estimated.)

5. Results
5.1. Spatial Maps

[15] Seasonally-averaged spatial maps of the spectral-
solution flux (Figure 4) are qualitatively identical to those
presented in A01, and the reader is referred there for more
details. As in A01, strong western-enhanced, midlatitude
fluxes are observed with maxima in local winter associated
with travelling storms. These midlatitude maxima are evi-
dent, as before, in the zonal-mean profile (Figure 1, green).
[16] The global power input from the wind to inertial

motions is given by the area integral of the panels in Figure 4.
For the period 1989–1995 (considered by WH), the mean
input is 0.47 TW, about 60% higher than A01’s previous
estimate (owing to the larger domain and the incorporation of
near-inertial Ekman motions), but only 70% of theWH value
(see Appendix A).

5.2. 54-Year Record

[17] Since the 1950’s the frequency and intensity of extra-
tropical cyclones has increased in both the northern [Graham

and Diaz, 2001] and southern [Hopkins and Holland, 1997]
Pacific. The effects of these changes on the fluxes are
investigated by computing the wind-work for each year of
the NCEP Reanalysis, from 1948–2001. (The same MLD
climatology is used for all years. However, wind, rather than
MLD, fluctuations dominate the fluxes [A01].) The tropical
input (jlatj < 20!) has remained nearly constant at 0.15 TW
over the 54-year record (Figure 5, blue line), but the
extratropical input has increased by about 40%. The total
has increased about 25% over the 54 years, paralleling
observations of increasing cyclone frequency (gray line),
maximum wind, and wave heights in the North Pacific

Figure 2. Flux transfer functions Re[R(s)] for Z (black),
ZE (red) and ZI (green) for the frequency-independent-r case
(thin) and an r that decays to zero for s < 0.5f (thick).

Figure 3. Annual-mean flux for 1988 from NCEP (a) and
REMO (b). (c) The zonal-mean flux from the NCEP (thin)
and REMO (thick) winds. (d) The ratio at each location
(dots), the zonal mean (thin), a fit (thick), and the factor
used by WH (dashed). (e) Scatter plot of REMO vs.
corrected NCEP fluxes.

Figure 4. The 1992 global distribution of work done by
the wind on near-inertial motions computed using (5) and
incorporating monthly mixed-layer-depth variations. Each
panel is a seasonal average over the months indicated at left.
Ice is indicated in white.

ALFORD: INERTIAL ENERGY-FLUX 6 - 3

‘Despite their ubiquity, energy, and many years of study,
much about the behavior of inertial waves remains obscure.’
(Ferrari & Wunsch 2009)
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Near-inertial waves
Main issues:

I NIW propagation into ocean interior (weak dispersion),
I role of mean flow in this propagation,
I generation of small vertical scales,
I impact of NIWs on mean flow.

Main theoretical tools: linear wave dynamics,
I WKB approximation (Kunze 1985): takes kLflow � 1,

but kLflow . 1,
I Young-Ben Jelloul model (1997): assumes ω ≈ f ,

kLflow = O(1) to describe slow modulation of NIWs.

Derivation of a wave-mean flow model,
coupling the Young-Ben Jelloul and quasigeostrophic models.



GEOMETRIC GLM NEAR-INTERIAL WAVES COUPLED MODEL CONCLUSION

Near-inertial waves
Main issues:

I NIW propagation into ocean interior (weak dispersion),
I role of mean flow in this propagation,
I generation of small vertical scales,
I impact of NIWs on mean flow.

Main theoretical tools: linear wave dynamics,
I WKB approximation (Kunze 1985): takes kLflow � 1,

but kLflow . 1,
I Young-Ben Jelloul model (1997): assumes ω ≈ f ,

kLflow = O(1) to describe slow modulation of NIWs.

Derivation of a wave-mean flow model,
coupling the Young-Ben Jelloul and quasigeostrophic models.



GEOMETRIC GLM NEAR-INTERIAL WAVES COUPLED MODEL CONCLUSION

Near-inertial waves
Main issues:

I NIW propagation into ocean interior (weak dispersion),
I role of mean flow in this propagation,
I generation of small vertical scales,
I impact of NIWs on mean flow.

Main theoretical tools: linear wave dynamics,
I WKB approximation (Kunze 1985): takes kLflow � 1,

but kLflow . 1,
I Young-Ben Jelloul model (1997): assumes ω ≈ f ,

kLflow = O(1) to describe slow modulation of NIWs.

Derivation of a wave-mean flow model,
coupling the Young-Ben Jelloul and quasigeostrophic models.



GEOMETRIC GLM NEAR-INTERIAL WAVES COUPLED MODEL CONCLUSION

Coupled model

Impact of NIWs on mean flow:
I non-dissipative framework,
I time-scale separation U/(fL)� 1 provides a natural

averaging,
I slow modulation of NIW amplitude and mean flow on the

same time scale,
I no spatial scale separation,
I averaged model that respects dynamical constraints

(momentum, energy conservation, circulation. . . ).

Recipe: combine glm (Soward & Roberts 2010), Salmon’s
variational GLM (2013), and Whitham averaging.
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Coupled model

Start with hydrostatic Boussineq Lagrangian

L[x, p] =

∫ (
1
2
(
ẋ2 + ẏ2)− (fy +

βy2

2

)
ẋ + bz + p

(
∂x
∂a
− 1
))

da

and introduce x(a, t) = X(a, t) + ξ(X(a, t), t).

To leading order, ξ describes NIWs:
∂tξ

(1) − fη(1) = 0, ∂tη
(1) + f ξ(1) = 0, ξ

(1)
x + η

(1)
y + ζ

(1)
z = 0.

Solve in terms of the NIW amplitude: M(x, y, z, t), with

ξ(1) + iη(1) = Mze−ift, ζ(1) = −1
2(∂x − i∂y)Me−ift + c.c..

Whitham average, using ξ(2) = 1
2ξ

(1) · ∇ξ(1) (glm) to obtain
L̄[X,M,P].
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Coupled model
Variations δM give the YBJ equation (for β = 0),

(DtMz)z +
i

2f
(
∇2PMzz + Pzz∇2M− 2∇Pz · ∇Mz

)
= 0.

Variations δX−1 give Lagrangian-averaged primitive equations,
with ∇3 · uL = 0.

Assuming quasigeostrophic mean flow,
uL = (∇⊥ψ, 0) = f−1(∇⊥P, 0),

we obtain the coupled YBJ/QG model

(DtMz)z + i
2

(
∇2ψMzz + (N2

f + ψzz)∇2M− 2∇ψz · ∇Mz

)
= 0 ,

∂tq + ∂(ψ, q) = 0 , with
(
∇2 + ∂z

(
f 2

N2∂z

))
ψ = q + F(M∗,M) ,

F(M∗,M) =
if
2 ∂(M∗z ,Mz) +

f
4

(
2|∇Mz|2 −Mzz∇2M∗ −M∗zz∇2M

)
.
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Coupled model
The model is Hamiltonian, conserves action and energy:

A =

∫
|Mz|2 dx = NIW kinetic energy,

H = 1
2

∫ (
|∇ψ|2 +

f 2

N2 (∂zψ)2 + N2

2 |∇M|2
)

dx

= QG energy + NIW potential energy .

I evolution governed by PV q and NIW amplitude M,
I advecting velocity∇⊥ψ depends on both q and M,
I energyH is simple in terms of ψ, complicated in terms of q.

Physical implications:
I A = const: no spontaneous NIW generation,
I H = const: mean-flow energy decays as |∇M| increases.
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Conclusion

Lagrangian mean theories
I think geometrically, avoid coordinate-dependent objects,
I compact notation, unpack only when needed,
I advantages of glm for incompressible fluids.

Near-inertial waves
I use glm in Lagrangian to derive a coupled YBJ-QG model,
I a Hamiltonian subgrid scale model (cf. Gjaja & Holm

1996),
I formulation well suited for numerical integration,
I energy transfer mean flow→ NIWs: significant in the

ocean?
I shallow-water version.
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