Characterizing the Galactic double white dwarf population

Part I: Observations and implications to the SN Ia progenitor problem

with

Na'ama Hallakoun

Weizmann Institute of Science

Background image: nubobo

Part I:Dan Maoz, Carles BadenesPart II:Valeriya Korol, Silvia Toonen

Virtual KITP WD conference, 2021 March 30

Why should we care about double WDs?

- Binary evolution
- Type-la supernova progenitors
- Gravitational-wave sources

Why should we care about double WDs?

Valeriya's

- Binary evolution
- Type-la supernova progenitors
- Gravitational-wave sources

Why should we care about double WDs?

Valeriya's

- Binary evolution
- Type-la supernova progenitors
- Gravitational-wave sources

Type-la supernovae are important

- Major source of heavy elements
- Standard candles
 - Dark energy

But, nobody knows exactly WHAT is exploding and HOW

Maoz et al. 2014, *ARAA* Patat & Hallakoun 2019

Type-la supernovae are important

- Major source of heavy elements •
- This is the type-la Standard candles supernova (SN Ia) progenitor problem

Dark

But, nobod is exp

> zetal. 2014, ARAA Patat & Hallakoun 2019

--Caltech O; NASA/JPL

Calar

Double degenerate (DD; Webbink 1984, Iben & Tutukov 1984)

NASA/Tod Strohmayer (GSFC)/Dana Berry (Chandra X-Ray Observatory)

Double degenerate (DD; Webbink 1984, Iben & Tutukov 1984)

If correct, there should be enough close double WD systems to reproduce the Milky Way SN Ia rate

WD

(Chandra X-Ray Berry (GSFC)/Dana NASA/Tod Strohmayer Observatory)

WD

4 / 20

The search for double WDs

An efficient way: look for radial velocity (RV) variations in WD spectra

The ΔRV_{max} distribution (Maoz et al. 2012)

The distribution of maximal observed RV difference per system:

The ΔRV_{max} distribution (Maoz et al. 2012)

The distribution of maximal observed RV difference per system:

The ΔRV_{max} distribution (Maoz et al. 2012)

The distribution of maximal observed RV difference per system:

nh

nh.

the fraction of all WDs in binaries within *x* AU

bin

 $\propto f$

nh.

 \mathbf{m}_{2}

C

m,

 \mathbf{m}_{2}

 $da_0^{\alpha} \propto a_0^{\alpha}$

a

dN

After 10 Gyr of evolution:

max

RV

phase

The ΔRV_{max} distribution

Badenes & Maoz 2012

The ΔRV_{max} distribution

Badenes & Maoz 2012

the fraction of all WDs in binaries within a specific separation

The ΔRV_{max} distribution

Badenes & Maoz 2012

the fraction of all WDs in binaries within a specific separation

the separation distribution of double WDs **at birth**

12 / 20

The double-WD population from SDSS

The double-WD population from SDSS

The double-WD merger rate is similar to the SN Ia rate in the Milky Way!

The double-WD population from SDSS

The double-WD merger rate is similar to the SN Ia rate in the Milky Way!

(but uncertain: could be 10x lower or 50x higher)

The SPY sample (the ESO-VLT Supernova-Ia Progenitor surveY)

2001-2003, PI: R. Napiwotzki UVES@VLT

Napiwotzki et al. 2020

- High resolution (1-2 km s⁻¹)
- High S/N
- Multi-epoch
- ~800 WDs

The SPY sample (the ESO-VLT Supernova-la Progenitor surveY)

2001-2003, PI: R. Napiwotzki UVES@VLT

Napiwotzki et al. 2020

- High resolution (1-2 km s⁻¹)
- High S/N
- Multi-epoch
- ~800 WDs

The double-WD population from SPY

15 / 20

The double-WD population from SPY

Why not both?

Badenes 2018 Š Hallakoun, Maoz,

16 / 20
Maoz, Hallakoun, & Badenes 2018

17 / 20

Maoz, Hallakoun, & Badenes 2018

10% 9.5%±2.0% (+1.0%) of the WDs are double WDs with separations <4 AU

Maoz, Hallakoun, & Badenes 2018

The WD merger rate is **4.5-7**

times **higher** than the specific SN Ia rate in the Milky Way

(9.7±1.1)x10⁻¹² yr⁻¹ WD⁻¹

10%
9.5%±2.0% (+1.0%)
of the WDs are double WDs with separations <4 AU

-1

-17

Maoz, Hallakoun, & Badenes 2018

The WD merger rate is

4.5-

times high than the spec SN la rate in th Milky Way

(9.7±1.1)x10⁻¹² yr⁻¹ WD⁻¹

~10⁻¹¹ yr⁻¹ WD⁻¹ WD merger rate

~10¹⁰ yr Galaxy lifetime

~10⁻¹¹ yr⁻¹ WD⁻¹ WD merger rate ~10¹⁰ yr Galaxy lifetime 8.5-11% of WDs have merged

~10⁻¹¹ yr⁻¹ WD⁻¹ WD merger rate ~10¹⁰ yr Galaxy lifetime 8.5-11% of WDs have merged

~10⁻¹¹ yr⁻¹ WD⁻¹ WD merger rate

~6

~1.7x10⁻¹² yr⁻¹ WD⁻¹ SN Ia rate

18 / 20

~15% of double-WD mergers lead to a SN Ia

~15% of double-WD mergers lead to a SN Ia

~10% of the WDs are merger products

97h with UVES on the VLT

following-up double-WD candidates

97h with UVES on the VLT + LBT, SALT... following-up double-WD candidates

Thanks to help by many more collaborators! incl. (but not only) Jha, Mannucci, Rebassa-Mansergas...

97h with UVES on the VLT GTC, + LBT, SALT... following-up double-WD candidates

Thanks to help by many more collaborators! incl. (but not only) Jha, Mannucci, Rebassa-Mansergas...

(km)

elocity

97h with UVES on the VLT + LBT, SALT... following-up double-WD candidates

Thanks to help by many more collaborators! incl. (but not only) Jha, Mannucci, Rebassa-Mansergas...

SDSS-V during 2020-2025 will get multi-epoch spectra for ~100,000 Gaia WDs!

(km/

elocity

WD1210+140

30th March 2021 - White Dwarfs from Physics to Astrophysics - virtually at KITP Santa Barbara

Characterizing the Galactic double white dwarf population

Part II: future observations with LISA

Valeriya Korol, Na'ama Hallakoun and Silvia Toonen

University of Birmingham

Why LISA will be revolutionary for DWDs?

Observed horizon with optical telescopes now

Why LISA will be revolutionary for DWDs?

Observed horizon with optical telescopes now

Will be accessible with LISA in 2030's

LISA mission proposal Amaro-Seoane et al. (2017)

Gravitational radiation from the DWDs to a good approximation can be treated as a quasi-monochromatic signal with linear drifts in frequency

$$f_{\rm GW}(t) = f_0 + \dot{f}_0(t - t_0).$$

Each of the signals can be described by 8 parameters

 $\{\mathcal{A}, f_0, \dot{f}_0, \lambda, \beta, \iota, \psi, \phi_0\}$

LISA mission proposal Amaro-Seoane et al. (2017)

Gravitational radiation from the DWDs to a good approximation can be treated as a quasi-monochromatic signal with linear drifts in frequency

 $f_{\rm GW}(t) = f_0 + \dot{f}_0(t - t_0).$

Each of the signals can be described by 8 parameters

$$\{\mathcal{A}, f_0, \dot{f}_0, \lambda, \beta, \iota, \psi, \phi_0\}$$

Angular parameters: Ecliptic coordinates, inclination, GW polarization, initial orbital phase

LISA mission proposal Amaro-Seoane et al. (2017)

Gravitational radiation from the DWDs to a good approximation can be treated as a quasi-monochromatic signal with linear drifts in frequency

$$f_{\rm GW}(t) = f_0 + \dot{f}_0(t - t_0).$$

Each of the signals can be described by 8 parameters

LISA mission proposal Amaro-Seoane et al. (2017)

LISA mission proposal Amaro-Seoane et al. (2017) https://www.elisascience.org/files/publications/LISA_L3_20170120.pdf

Gravitational radiation from the DWDs to a good approximation can be treated as a quasi-monochromatic signal with linear drifts in frequency

$$f_{\rm GW}(t) = f_0 + \dot{f}_0(t - t_0).$$

Each of the signals can be described by 8 parameters

Gravitational radiation from the DWDs to a good approximation can be treated as a quasi-monochromatic signal with linear drifts in frequency

$$f_{\rm GW}(t) = f_0 + \dot{f}_0(t - t_0).$$

Each of the signals can be described by 8 parameters

$$\{\mathcal{A}, f_0, \dot{f}_0, \lambda, \beta, \iota, \psi, \phi_0\}$$
$$\mathcal{A} = \frac{2(G\mathcal{M})^{5/3}}{c^4 D} (\pi f_0)^{2/3}$$

LISA mission proposal Amaro-Seoane et al. (2017)

Gravitational radiation from the DWDs to a good approximation can be treated as a quasi-monochromatic signal with linear drifts in frequency

$$f_{\rm GW}(t) = f_0 + \dot{f}_0(t - t_0).$$

Each of the signals can be described by 8 parameters

 $\{\mathcal{A}, f_0, f_0, \lambda, \beta, \iota, \psi, \phi_0\}$

We employ DWD population model from Maoz, Hallakoun & Badenes (2018) to sample $M_{\rm 1},~M_{\rm 2}$ and f.

LISA mission proposal Amaro-Seoane et al. (2017)

Assembling a model based on SDSS+SPY

Inherent assumptions of the Maoz et al. (2018) model:

- At the time of DWD formation the distribution of separations follows a power law with index α
- Constant star formation rate in the Milky Way disk over the last 10 Gyr

Fit to SDSS+SPY sample:

- $f_{bin} = 0.095 \pm 0.020$ for a < 4 au
- $\alpha = -1.3 \pm 0.15$

DWD/WD fraction fbin

Maoz, Hallakoun & Badenes (2018)

Assembling a model based on SDSS+SPY

Primary masses are drawn from a Gaussian mixture (Kepler et al. 2015) while **secondary masses** are drawn from a flat distribution **Orbital separations** are based on the results from SDSS & SPY samples (Maoz et al. 2018) using $f_{bin} = 0.095$ (for a < 4au) and $\alpha = -1.3$

DWD positions in the Milky Way disc are drawn from

$$P(R, z) \propto e^{-R/R_{\rm d}} \operatorname{sech}^2(z/z_{\rm d})$$

and then converted into heliocentric distances (Nelemans et al. 2001)

Total number of DWD in the LISA band = $V_{MWdisc} \times \rho_{WD} \times f_{bin} \approx 4.5 \times 10^6$

• We estimated the Milky Way disc volume to be $V = 4.5 \times 10^{11} \text{ pc}^3$ by integrating the disc stellar density assumed to follow an exponential radial stellar profile with an isothermal vertical distribution (e.g. Nelemans et al. 2004)

$$P(R, z) \propto e^{-R/R_{\rm d}} \operatorname{sech}^2(z/z_{\rm d})$$

- We adopt $p_{wd} = 4.49 \times 10^{-3} \text{ pc}^{-3}$ estimated based on Gaia DR2 within 20 pc by Hollands et al. (2018)
- We obtain DWD fraction fbin = 0.21% by rescaling fbin = 9.5% (for a < 4 au Maoz, Hallakoun & Badenes 2018) to the low frequency edge of the LISA band from

$$f_{\text{bin, }a_{\text{max}}} = \frac{\int_{a_{\text{min}}}^{a_{\text{max}}} N(a, \alpha) \, da}{\int_{a_{\text{min}}}^{4 \, \text{au}} N(a, \alpha) \, da} f_{\text{bin, }4au}$$

48 x 10³ DWDs detectable by LISA

SNR =
$$\mathcal{A} F(\iota, \theta, \phi, \psi) \sqrt{\frac{T_{\text{obs}}}{S_{\text{n}}(f)}}$$

Note: here we have considered an up-to-date LISA's sensitivity requirements and recently updated mission duration of 6 years with 75% duty cycle (i.e. 4,5 years of science operations)

Note: this is only a lower limit!

Model variations

Model variations

The number of LISA detection is about twice that estimated with BPS models (e.g. Korol et al. 2017)

* BPS models are constructed starting from Toonen et al. (2017) and using the same stellar density distribution and constant star formation history as for the obs. motivated model

What will we learn from the LISA sample?

GWs of DWDs as Galactic tracers

- Numerous and widespread
- Detectability in the Galaxy everywhere
- Measurement of the distance directly from the LISA signal
- Contamination: none

Based on Wilhelm, Korol et al. (2020)

Data: https://figshare.com/articles/dataset/DWD_FullPopulation_Wilhelm_Korol_Rossi_DOnghia_2020/13168464

Milky Way shape unveiled with DWDs

Spatial distribution (in physical and/or Fourier space) of DWDs detectable by LISA yields the measurements of

- Bulge and disc scale radii, and possibly disc scale height (Korol et al. 2019; see also Adams et al. 2012, 2014; Benacquista et al. 2006, Breivik et al. 2019)
- Bar's lengths, axis ratio and orientation angle (Wilhelm, Korol et al. 2020)

competitive with those based on optical and near-infrared observations.

Based on Wilhelm, Korol et al. (2020)

Data: https://figshare.com/articles/dataset/DWD_FullPopulation_Wilhelm_Korol_Rossi_DOnghia_2020/13168464

DWDs in Milky Way satellites

Satellites with stellar mass > 10⁶ M∘ can shine in GWs (Korol, Toonen et al. 2020)

Roebber (incl. Korol) et al. (2020)

DWDs in Milky Way satellites

Satellites with stellar mass > 10⁶ M₀ can shine in GWs (Korol, Toonen et al. 2020)

LISA can resolve LMC & SMC

Keim, Korol et al. in prep.
DWDs in Milky Way satellites

- Satellites with stellar mass > 10⁶ M₀
 can shine in GWs (Korol, Toonen et al. 2020)
 - LISA can resolve LMC & SMC (Keim, Korol et al., in prep.)
 - LISA detections can inform us about the total stellar mass (Korol et al. 2021)

Roebber (incl. Korol) et al. (2020)

DWDs in Milky Way satellites

- Satellites with stellar mass > 10⁶ M_☉ can shine in GWs (Korol, Toonen et al. 2020)
 - LISA can resolve LMC & SMC (Keim, Korol et al., in prep.)
 - LISA detections can inform us about the total stellar mass (Korol et al. 2021)
 - Discovery of satellites inaccessible to electromagnetic observatories (Roebber et al. 2020)

Roebber (incl. Korol) et al. (2020)