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• single stellar evolution 

• Orbit stability (Duncan & Lissauer 
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2. THE EQUATIONS

There are several competing processes that affect the orbital distance between the star
and the planet as the star evolves off the MS: the changes in the mass of both the planet

and the star, the gravitational and frictional drag, and the tidal force.

To determine the rate of change in the planet’s mass, we consider a planet of mass Mp

and radius Rp moving with a velocity, v, in a circular orbit (e = 0) around a star of mass
M∗. Since the planet is moving supersonically through the matter ejected by the giant star,

it accretes mass. The accretion rate onto the planet, Ṁp |acc, is given approximately by the
Bondi-Hoyle expression (e.g., Bondi & Hoyle 1944; Ruderman & Spiegel 1971),

Ṁp |acc = πR2

Aρv , (1)

where ρ is the density of the environment and RA is the accretion radius (RA = 2GMp/v2

with G the gravitational constant). At very short distances (where RA ! Rp) we have

replaced R2
A by RARp to correct the geometrical radius by gravitational focusing effects.

At the same time, the planet’s surface is being heated by radiation arising from the

shock front and from the stellar surface. This heating can lead to evaporation of surface
material. We estimate the evaporation rate, Ṁp |ev as in Villaver & Livio (2007; Eq. 9).

The temperature at the planet’s surface has been taken to be the maximum between the
radiative equilibrium temperature of the planet (see e.g., Eq. 5 in Villaver & Livio 2007)

and the temperature of the shocked gas Tsh = (3mH/16kb)v2 (estimated from the Rankine-
Hugoniot conditions for an adiabatic shock where kb is Boltzman’s constant and mh the mass
of the hydrogen atom).

The rate of change in the planet mass is thus given by

Ṁp = (Ṁp |acc − Ṁp |ev) . (2)

The rate of change of the stellar mass is simply Ṁ∗ = −Ṁmlr, where Ṁmlr is the stellar

mass-loss rate. Using Reimers’ law for Red Giants (Reimers 1975),

Ṁmlr = 4 × 10−13 ηR
L∗R∗

M∗
[M# yr−1] , (3)

where L∗, R∗ and M∗ are the stellar luminosity, radius, and mass respectively (in solar units)
and ηR is the Reimers parameter, which we take throughout this work to be ηR = 0.6

Conservation of angular momentum gives the equation for the rate of change in the
orbital radius of the planet (see, e.g., Alexander et al. 1976; Livio & Soker 1984),

(
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where Ff and Fg are respectively the frictional and gravitational drag forces and (ȧ/a)t is

the rate of orbital decay due to the tidal interaction.

The gravitational drag force, Fg, arises from the eddying motions that are set up in

the fluid by the passage of the planet. It is a consequence of the gravitational interaction
of the planet with a gaseous medium. The drag force is given by (e.g., Ostriker 1999, and

references therein)

Fg = 4π
(GMp)2

c2
s

ρI , (5)

where I is a time-dependent function of the Mach number. The numerical results of Ostriker
(1999) show that for the Mach numbers encountered here, I is approximately constant and
has the value I ! 0.5.

The loss of angular momentum associated to the frictional force Ff is proportional to

the surface area of the planet exposed to the flow and it can be expressed in the form (e.g.,
Rosenhead 1963)

Ff =
1

2
Cdρv2πR2

p , (6)

where Cd ! 0.9 is the dimensionless drag coefficient for a sphere.

Finally, the angular momentum loss associated to the tidal term (ȧ/a)t arises from the

additional force (besides the gravitational pull between the two centers of mass) resulting
from the non-spherical part of the mass distribution from the tidally distorted companion.

In giant stars, which have massive convective envelopes, the most efficient mechanism to
produce tidal friction is turbulent viscosity (e.g., Zahn 1966, 1977, 1989). The dissipation

timescale is determined by the effective eddy viscosity, with eddy velocities and length scales
given approximately by standard mixing length theory if convection transports most of the
energy flux (Zahn 1989; Verbunt & Phinney 1995; Rasio et al. 1996). The tidal term is given

by
(
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, (7)

with Menv being the mass in the convective envelope, q = Mp/M∗, and τd the eddy turnover

timescale, given in the case of a convective envelope (Rasio et al. 1996),

τd =

[

Menv(R∗ − Renv)2

3L∗

]1/3

, (8)

where Renv is the radius at the base of the convective envelope. The term f in Eq. (7)
is a numerical factor obtained from integrating the viscous dissipation of the tidal energy
across the convective zone. Zahn (1989) used f = 1.01(α/2) where α is the mixing length

Villaver et al. (2014)
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Figure 13. The MCD as a function of primary mass and companion mass
(upper panel) or mass ratio (lower panel) during the AGB. Stellar models
are for Z = 0.01. The star symbol denotes a binary system with a 1.2-M!
primary and a 0.3-M! companion.

Fig. 12 shows two distinct areas. The first region is a rectangle
between primary masses 0.8 and 1.8 M!. In this mass range, the
peak RGB radius is between ∼120 and ∼150 R! (for the 0.8 and
1.0 M!, primaries, respectively; see Fig. 1 for Z = 0.01). As a
result of such high-peak RGB radius, the MCD is also high. Within
this primary mass range, the MCD initially increases as a function
of mass ratio, up to q = 0.05 to values of ∼470 R!. For mass
ratios larger than ∼0.05, we see a sudden decrease in the MCD to
∼300 R!, that can be attributed to the tidal spin-up of the primary.
At q ∼0.4, the MCD starts to increase again gradually, particularly
for the lower mass primaries, due to a larger value of q in equation
(1). In conclusion, primaries with ZAMS mass −<1.8 M! capture
companions that are typically closer than ∼2 to 3 times their maxi-
mum radius, with the lowest mass companions being captured out
to almost 4 times the maximum radius.

Between ZAMS masses of 1.8 and 2.0 M!, we see in Fig. 1 a
sudden drop in the peak RGB radius to ∼40 R!, leading to a drop
in MCD in Fig. 12. Between ZAMS masses of 2.0 and 4.0 M!, the
peak RGB radius sits between 40 and 60 R!, resulting in a MCD
between ∼40 and 200 R!. We also witness the initial increase,
peak and decrease behaviour as a function of mass ratio also seen at
lower primary masses. In conclusion, primaries with ZAMS mass
>1.8 M! capture companions that are typically out to ∼1 to 2 times
their maximum radius, with only the lowest mass companions being
captured out to almost 4 times the maximum radius.

Fig. 13 shows the MCD during the AGB phase as a function of
primary ZAMS mass and secondary mass (upper panel) or mass

ratio (lower panel). At a metallicity of Z = 0.01, a primary star
of 0.8 M! forms a helium white dwarf and does not ascend the
AGB. So the AGB MCD for these systems is assumed to be zero.
Maximum AGB radii increase with ZMAS and are between 220 and
700 R!, for masses of 1 and 4 M!, respectively. Companions are
captured out to a range of distances between 350 and 2500 R!. For
each ZAMS mass, the capture distance increases with companion
mass, although such increase is mitigated by spin-orbit coupling at
intermediate companion masses.

Overall AGB stars in the 1–4 M! mass range capture companions
that are between 1 and 4 times the maximum AGB radius. The
lowest mass companions, such as planets, only get captured out to
1–1.5 times the maximum AGB radius. The most massive primaries
are unable to tidally capture planetary companions, but they capture
massive companions (q ∼ 1) out to almost four times the maximum
AGB radius. The 2-M! primaries capture companions the farthest
relative to their radii, but, in absolute terms, it is the 4-M! primaries
that capture companions the farthest. The implication of this fact
will be discussed in Section 6.

4.5 Which binaries interact on the AGB

In Figs 12 and 13, we plot an asterisk at M = 1.2 M! and M2

= 0.3 M!. These are typical values for the ZAMS mass of a PN
central star and the mass of its companion. These values are selected
in the following way. From a population synthesis calculation, the
PN progenitor mass distribution peaks steeply at 1.2 M! (Moe
& De Marco 2006, their fig. 10), despite the initial mass function
peaking at lower masses (e.g. Chabrier 2003), because stars with a
mass lower than ∼0.9 M! tend not to make visible PN.6 As for the
companion mass, if the close companions to the central stars of PN
had the same spectral type distribution as the companions to white
dwarfs, then the mean spectral type of the companions to central
stars of PN would be ∼M3V (this is the most represented spectral
type in the histogram of WD companion spectral types of Farihi,
Becklin & Zuckerman 2005), corresponding to masses of 0.33 M!
(Raghavan et al. 2010; De Marco et al. 2013).

Hence, the asterisk in Fig. 13 informs us that for a representative
PN central star, binary companions orbiting farther than approxi-
mately 880 R! will not be captured into an AGB interaction. On
the other hand, the asterisk in Fig. 12 informs us that companions
closer than ∼320 R! will interact during the RGB. Those systems
that interact via a CE on the RGB and survive as binaries are un-
likely to ascend the AGB. This is due either to a low envelope mass
that would prevent an AGB ascent (Dorman, Rood & O’Connell
1993) or to the fact that if the post-RGB primary attempts to expand
on its AGB ascent, it will suffer a CE with its very close compan-
ion, preventing further expansion. In conclusion, in the mass range
1–4 M! and for Z = 0.01, only binaries with orbital separations
between ∼320 and ∼880 R! will enter a CE on the AGB.

Instead than simply adopting MCD values corresponding to one
representative primary-companion mass combination, we actually
convolved the columns of Figs 12 and 13 with the function repre-
senting the progenitor mass distribution for PN (Moe & De Marco
2006, their fig. 10) and the rows with the companion mass distribu-
tion from Raghavan et al. (2010), which is flat (all mass ratios are
equally represented). From this exercise, we obtain the same MCDs

6 This is known as the ‘lazy PN’ paradigm, discussed, e.g. by Jacoby et al.
(1997) and also explained in Moe & De Marco (2006), their fig. 7, section 3.7
and references therein.

MNRAS 463, 1040–1056 (2016)
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How can we bring material close to the WD to 
explain WD pollution?



Gravitational assistance: 
Keeping material (asteroids/moons/fragments of planets) far 
from the star at several au + major planet to perturb the orbit



Single planet far away interacting gravitationally with a  disk 

• Planet on circular orbit + kuiper belt: Bonsor et al. (2011, 2012)                                           


• Planet MMR + asteriod belt: Debes, Walsh & Stark (2012)


• Single planet with varying e and mass: Frewen & Hansen (2014)


• Circular orbits do not work: Antoniadou & Veras (2016) see as well 
Veras et al. (2014, 2018a)



Giant Planet in Transit:   Vanderburg et al. (2020) 
Giant planet as acretor:  Gänsicke et al. (2019)



How can we bring planets close to the WD? 

-múltiple planets 
-múltiple stars 

or… 

-common envelope evolution



Multiple planetary systems



Debes & Sigurdsson (2002)

Veras et al. (2013, 2016a); Smallwood et al. (2018)


Stability of multiple planetary systems



Number of planets lost in the three-1 MJ runs 

Mustill, Veras & Villaver (2014)

3-planet system instability
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et al (submitted) is matched very well by the simulations with outer
belts, while the inner belts have an accretion rate that falls off a lit-
tle more steeply. Both of the belt configurations agree much more
closely with the observed trend than do any of the configurations
with higher-mass planets.

3.2.4 Collision with the WD versus tidal disruption

Hitherto we have considered a conservative condition for the ac-
cretion of material onto the WD: the physical collision between
a particle and the star. However, the physical radius of the WD
is smaller, by a factor of ⇠ 100, than the Roche limit at which
bodies are tidally disrupted. Bodies with pericentres smaller than
this distance (roughly 1 Solar radius, depending on density) will be
shredded into long debris trails (e.g., Debes et al. 2012; Veras et al.
2014). An optimistic condition for accretion onto the WD would
be to assume that all material entering this Roche limit would be
accreted. Thus, direct collision and entry inside the Roche limit
should bracket the true amount of material accreted.

We show in the final two columns of Table 3 the total number
of particles entering within 0.003 au of the WD, together with the
fraction of the belt surviving the AGB that this represents. These
values are considerably higher than those for the number of parti-
cles colliding with the WD: 4.7% and 13.3% for the S2SJ sets with
outer and inner belts respectively, compared to 0.7% and 2.3% for
the particles actually hitting the WD. With the less massive plan-
ets, these values are 20% and 37% from the outer and inner belts.
Interestingly, the N2S and SE2N sets are equally efficient at driving
material inside the Roche limit, in contrast to their efficiencies at
delivering material to the WD radius where the SE2N simulations
perform better. The fraction of belt material delivered to the Roche
limit and to the WD radius in the different simulation sets is dis-
played graphically in the upper panel of Figure 8.

Material is delivered to the Roche radius at higher rates than
it is delivered to the WD surface, as is to be expected since not all
particles crossing the Roche limit will have their pericentres forced
down to the WD radius itself. However, the trend in accretion rate
with time, as measured by the rate at which material reaches these
two thresholds, is broadly similar, as can be seen in the lower panel
of Figure 8 for the SE2N simulations. At very late times, the accre-
tion rate from the inner belts does not fall off as steeply when using
the Roche limit as a threshold compared to when using the WD
radius, and better matches the observed decay rate from Hollands
et al (submitted). In the N2S and S2SJ sets, the time over which
material is delivered to the Roche limit is brief.

What is the fate of the material that crosses the Roche limit? In
pure dynamical terms, some fraction of it does later collide with the
WD: 17% in the S2SJ runs, 30% in N2S and 43% in SE2N. These
bodies will constitute the “steeply infalling debris” whose destiny
was studied by Brown et al. (2017). The remainder may undergo
circularisation and collisional processing (e.g., Veras et al. 2015;
Kenyon & Bromley 2017). Before these processes occur, however,
the bodies may be ejected, particularly when the planets are mas-
sive. In the S2SJ runs, 82% of bodies which crossed the Roche limit
were subsequently ejected from the system, with a median lifetime
to ejection of only 18 Myr. As planet masses are reduced, ejection
becomes less efficient and takes longer: in N2S, 65% of these bod-
ies are ejected, with a median lifetime of 152 Myr, and in SE2N
only 43%, with a median lifetime of 677 Myr. Now, circularisation
of debris streams from disrupted bodies may take many Myr (e.g.,
Veras et al. 2015). We might expect therefore that much of the dis-
rupted material in the S2SJ systems does not in fact make it down

Figure 8. Top: Accretion efficiency onto the WD in our simulations. The
horizontal axis shows the mass range of the planets: SE2N “super-Earth to
Neptune”; N2S “Neptune to Saturn”, and S2SJ “Saturn to super-Jupiter”.
On the vertical axis is plotted the fraction of the belt which survived AGB
evolution which later enters the WD’s Roche limit (0.003 au, solid lines) or
collided with the WD (5 ⇥ 10

�5 au, dashed lines). The red and blue lines
mark simulations with inner and outer belts respectively. The efficiency of
delivery increases with decreasing planet mass. Bottom: Rates of delivery
to the Roche limit (solid) and the WD radius (dashed) in our SE2N runs.
Red and blue lines mark simulations with inner and outer belts respectively.
Despite the higher efficiency with which material is delivered to the Roche
limit compared to the WD surface, the trend with time is the same.

to the WD surface but will continue to be scattered by the planets
and be ejected into interstellar space. On the other hand, most of
the disrupted material in systems with low-mass planets will not
be scattered out of the system but will make its way to the surface
of the WD, whether through circularisation of the debris stream or
ongoing gravitational interactions with the planets.

A final caveat here is that, for computational reasons, we did

MNRAS 000, 1–17 (2018)
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Preliminary simulations (Section 2): 
three planets, no test particles

Main simulations (Section 3): 
three planets plus test particles
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Figure 1. Schematic setup for our simulations. In Section 2 we consider 3-planet systems orbiting a star of initial mass 3 M� . In Section 3 we incude test
particles in either an inner belt or an outer belt, in each case extending from within the nearest planets chaotic zone to more distant stable orbits.

⇠ 10% host a gas giant m sin i > 50 M� with a period of up to 10
years (Mayor et al. 2011). These numbers are in agreement with the
statistics of transiting planet candidates from the Kepler mission,
which found that 50% of stars have a planet of radius 0.8 � 22 R�
with a period less than 85 days and 5% host a giant planet (radius
> 6 R�) with a period less than 400 days (Fressin et al. 2013). Thus,
low-mass planets are common close to the star. It is not unreason-
able to speculate that low-mass (super-Earth or Neptune-like) plan-
ets may be equally common on wide orbits around the progenitors
of white dwarfs, although this depends on the properties of pro-
toplanetary discs and the pathways planet formation takes around
these more massive stars.

A final consideration is the spacing of orbits in multi-planet
systems. The eccentricity distribution of giant planets is explained
if the majority of them (⇠ 80% Raymond et al. 2011; Jurić &
Tremaine 2008) were sufficiently tightly packed after formation
that they experienced scattering early in their main sequence evo-
lution. Systems slightly more widely spaced are prime candidates
for destabilisation following post-MS mass loss, while systems that
have already experienced one instability on the MS often experi-
ence a second after the star becomes a WD (Mustill et al. 2014).
The timescale for a system to experience instability can be crudely
estimated from the planets’ separations in mutual Hill radii (Cham-
bers et al. 1996). For observed Kepler systems of four or more plan-
ets, Pu & Wu (2015) found that the distribution of separations peaks
at 14 mutual Hill radii. Lissauer et al. (2011) and Fabrycky et al.
(2014) estimated, from the empirical scalings of Smith & Lissauer
(2009), that a separation of 9 mutual Hill radii should be the ap-
proximate limit for systems to remain stable to the mid-MS age
of a typical star, but nevertheless found a number of more tightly-
packed systems. Considering all Kepler multiples, Weiss et al.
(2017) recently found that the median separation is ⇠ 20 mutual
Hill radii. If wider-orbit planets follow similar spacings, not all are
expected to be destabilised by mass loss: Mustill et al. (2014) esti-
mate the maximum limit for systems of three Earth-mass planets to
be destabilised around white dwarfs at around 18 single-planet Hill
radii, or 14 mutual Hill radii.

Based on the above considerations, we construct the following
simulation sets, each of 128 runs for a total of 1 536 runs:

• S2SJ-XYRH: Three giant planets, masses chosen from 100 �
1000 M� (“Saturn to super-Jupiter”). The innermost planet is
placed at 10 au, and the subsequent planets are separated by x to
y mutual Hill radii, where y = x + 2 and x 2 {4, 5, 6, 7, 8}.
• N2S-57RH: Three intermediate-mass planets, masses chosen

from 10 � 100 M� (“Neptune to Saturn”). We perform a single set
of runs in this mass range, with the inner planet again at 10 au and
subsequent planets spaced by 5 � 7 mutual Hill radii.

• SE2N-XYRH: Three low-mass planets, masses chosen from

1 � 30 M� (“Super-Earth to Neptune”), with the inner planet at
10 au and subsequent planets separated by x to y mutual Hill radii,
where y = x + 2 and x 2 {5, 6, 7, 8, 9, 10}.

Extrapolating from the statistics of close-in planets discussed
above, we expect the SE2N runs to represent the mass range of per-
haps the majority of the progenitor systems’ planets. However, our
systems are rather tightly spaced compared to the average Kepler
multiple.

For each planetary system, the masses of the planets are drawn
independently from a distribution uniform in the logarithm of the
mass, within the specified range. The initial eccentricities are zero,
and inclinations are drawn in the range [0�, 1�] from a reference
plane, with randomised longitudes of ascending node and mean
anomalies. The left-hand panel of Figure 1 illustrates the setup.

2.2 Results

These preliminary integrations show the usual destabilising effect
of stellar mass loss on orbiting planets. Stellar mass loss triggers
instability by increasing the planet:star mass ratio, increasing the
size of the Hill spheres and broadening orbital resonances. An ex-
ample is shown in Figure 2. This system experiences one early in-
stability on the MS (at around 2 Myr) before settling into a stable
two-planet configuration. This configuration is itself destabilised
following mass loss on the AGB, losing a second planet at around
0.9 Gyr, following several hundred Myr of planet–planet scattering.

Planetary instability may occur before or after AGB mass loss,
or not at all, the timescale being crudely set by the planetary sepa-
ration (e.g., Chambers et al. 1996). We show the stages of evolution
at which systems first lost planets, to collision or ejection, as a func-
tion of the initial separation in mutual Hill radii, in Figure 3. As the
separation increases, there is a trend away from instability before
mass loss, to instability following mass loss, and finally to stability
for the whole integration. This transition is not abrupt and con-
siderable overlap exists between these regimes, as expected from
previous studies (e.g., Chambers et al. 1996; Mustill et al. 2014).
The transition is less abrupt for the lower-mass planets. Instability
may also be measured by the onset of orbit-crossing, and by this
criterion the instabilities at different ages are tabulated in Table 1.
Again, we see a trend away from most instability occurring before
AGB mass loss, to most instability occurring after AGB mass loss,
to finally most systems being stable for the entire 5 Gyr integration
time.

We now consider the distribution of stellar ages at which in-
stability occurs. Figure 4 shows this distribution in different sim-
ulation sets. Each panel shows two kernel density estimates3: one

3 In this paper we show kernel density estimates constructed with an

MNRAS 000, 1–17 (2018)

Mustill et al. (2018)

3 planets + a planetesimal belt



Maldonado et al. (2021)
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Binaries

As perturber  
Hamers & Portergies Zwart (2016); Petrovich & Muñoz (2017);  

Stephan, Naoz & Zuckerman 2017

Veras, Xu & Rebassa-Mansergas (2018) 

binary distance for accretion 



WD 1856b 1.4 days orbit
Kozai migration:

—Muñoz and Petrovich (2020)
—O´Connor, Liu and Lai (2020)
—Stephan, Daoz and Gaudi (2020)



4

Fig. 2.— Evolution of the the zero-velocity curves for a planet as the primary (cyan) loses mass. The white regions indicate where the
planet may orbit. The bottleneck surrounding the first Lagrange point opens midway through the mass loss phase, allowing the planet to
orbit both components of the binary. The dashed-tail shows an episode of orbital bouncing, which continues while the curves remain open.
By the end of the mass loss phase, the zero-velocity surface has been pinched o�, and the planet is trapped around the secondary. A movie
of this evolution is available at http://www.cfa.harvard.edu/˜kkratter/BinaryPlanets/zvelmovie.mpg.

duced into the stellar binary – this results in oscillations
in the Jacobi constant for some surviving test particles.

4.1. Simulation Details

We simulate evolving binaries containing primaries
which evolve from M = 2 ⌅ 0.55M⇤. Such A stars host
planets (Johnson et al. 2007), undergo extensive mass
loss in a Hubble time and are frequently found in multiple
systems (Raghavan et al. 2010). We consider secondary
masses ranging fromm2 = 0.5�1.7M⇤, and initial binary
separations from a⇥,i = 75 � 105 AU. We fix the planet
separation at 15 AU: far enough to avoid any interaction
with the primary’s envelope, and close enough to be well
inside the (initial) stability region around the host star.
Test particles are initialized with zero eccentricity, ran-
dom phase, on coplanar orbits. In order to expedite the
calculations, we evolve the planetary and stellar orbits
with the analytic formulae for the first ⇤ 1490 Myr, un-
til the star reaches the beginning of the asymptotic giant
branch (AGB), at which point the mass loss rate rapidly
increases (shown in Figure 1).
We consider only the evolution of the more massive

star, which leaves the main sequence first (the planet
host). In Section 5 we discuss possible outcomes when
the second star evolves o� of the main sequence.
In total we explore 70 di�erent binary configurations.

For each binary configuration, we also explore the influ-
ence of mass loss rate and collisional cross section. Even

varying only two parameters produces a complex set of
outcomes because the probabilistic fate of a planet de-
pends not only on the initial and final configurations, but
also on the rate at which they pass through each state,
which is determined by the mass loss rate and expansion
of the primary’s atmosphere. We run our fiducial cal-
culations for 30 Myr following the end of the mass loss
phase, or 104 orbits, as most planets that survive to 10
Myr remain out to 100 Myr in several test cases. As seen
by Rabl & Dvorak (1988) and Holman & Wiegert (1999),
in the case with no mass loss, most of the orbital evolu-
tion occurs on timescales of less than 300 binary orbits.
We discuss these timescales further in Section 5.3.
Even though all the particles begin with nearly identi-

cal CJ (small variations are introduced due to variations
in the planets’ initial phases), mass loss induces a spread
in CJ because they undergo di�erent chaotic evolution-
ary paths while mass loss is ongoing. This spread pro-
duces a range of outcomes for planets in a given system.
During the course of the simulation we keep track of

each particles closest approach to either star. Particles
which penetrate the specified stellar radii are removed
from the calculation and identified as collisions. For the
primary, the collisional radius is set to be the maximum
of either the stellar radius calculated from Hurley et al.
(2000) or the star’s approximate tidal radius as a WD:
3.8⇥10�3 AU. The secondary’s radius is fixed at 1R⇤ for
all masses to simplify the interpretation of probabilities.

Kratter & Perets (2012)

See also Perets (2010), Veras & Tout (2012),  Moekel & Veras (2012)
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G. Privitera et al.: Star-planet interactions

Fig. 1. Left panel: predicted evolution of the surface velocity as a function of the surface gravity for 1.7 M� stellar models along the red giant
branch with and without planet engulfment. Di↵erent initial rotations on the ZAMS are considered for models without engulfment:⌦ini/⌦crit = 0.3,
0.5, 0.6, 0.7, 0.8, 0.9, and 0.95 (alternate black continuous and dashed lines). The time-averaged surface velocities during the main-sequence phase
of the models vary between about 30 and 240 km s�1. The model with planet engulfment (blue continuous line, the dotted blue line is the model
without engulfment) initially had ⌦ini/⌦crit =0.1 and a 15 MJ planet orbiting at a distance equal to 0.5 au. The engulfment occurs when the surface
gravity of the star is around 2.2. Right panel: evolution of the Rossby number as a function of the surface gravity for the same stellar models along
the red giant branch with and without a planet engulfment.

Fig. 2. Left panel: predicted evolution of the surface magnetic field as a function of the surface gravity for 1.7 M� stellar models along the red giant
branch with and without planet engulfment. The models are the same as in Fig. 1. Above the horizontal dashed line, Ro < 1. The two empty stars
are observations from Aurière et al. (2015). The other points correspond to the star HD 232862 observed on four consecutive days by Lèbre et al.
(2009; the triangle is the first observation, then the square, pentagon, and the circle). Right panel: evolution of the surface rotation as a function of
the surface gravity for the same models as shown in Fig. 1, with in additional cases where magnetic braking laws with various e�ciencies have
been accounted for after the engulfment. The dashed blue, magenta, and red curves correspond to values of f equal to 0.2, 0.5, and 0.8 using
Eq. (2) (see text). The red dotted line is obtained using Eq. (3) with f = 0.5. The continuous blue curve corresponds to the case f = 0. We have
indicated how the duration of the period during which the surface velocity is above 10 km s�1 varies as a function of the strength of the magnetic
braking. The same three observations as those indicated in the left panel are shown. The dots show the observations by Carlberg et al. (2012), the
black circles show the stars with a � sin i < 10 km s�1, the filled red- and blue-circled magenta points have � sin i > 10 km s�1. The blue-circled
magenta points correspond to stars (HD 31994, Tyc 0347-00762-1, Tyc 5904-00513-1, and Tyc 6054-01204-1) whose surface velocity cannot be
explained by any reasonable model for single stars (Paper II).

4. Planet engulfment and surface magnetic field

We now study the magnetic field generation for our models.
The left panel of Fig. 2 shows the predicted evolution of the
surface magnetic field as a function of the surface gravity for
1.7 M� stellar models with and without planet engulfment.
Surface magnetic fields of up to a few tens of Gauss could be
triggered by an engulfment at surface gravities where such fields
are otherwise not expected. Even for the initially faster rotating

stars that evolved in isolation, no significant magnetic field is
expected for log g < 2. Thus, a strong magnetic field at low
gravities together with a high surface velocities are strong signs
of a past engulfment. Of course, a planet with too low a mass or
a planet initially orbiting the star at too large a distance will only
lead to a weak magnetic field that will not be observable.

The question here might be asked whether the strong mag-
netic field linked to the fast rotation might prevent the star from
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Fig. 2.— Envelope binding energy as a function of stellar radius, for a selection of models
with masses of 0.91, 1.36, 2.04 3.05, 4.57, 6.84, 10.22, 15.3, 22.9 and 34.2M!, and Z = 0.02.

The line styles and colours indicate the same evolutionary phases as in Fig. 1 and are used
for the results obtained by using our fit. The black dotted lines show the original stellar-
evolution models, which overlap with the fits in most places. RGB and AGB phases are

disconnected here, and the lowest-mass and the three highest-mass models do not have an
AGB phase.
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Figure 2. Time-scale to instability for progenitor systems of NN Ser, as a
function of initial binary separation. Systems were integrated up to 107 yr.
The black crosses show systems with the nominal planetary semi-major
axes; red show systems with ad increased by 2σ and ac increased by 3σ .
The line of points at ∼100 yr is an artefact of MERCURY’s ejection-tracking
algorithm.

with the inner planet’s orbit enlarged by 2σ and the outer planet’s
by 3σ . The stability lifetimes of these systems are shown as the
red points in Fig. 2. 16 of the 3740 systems integrated survived for
the 10 Myr integration. These were all orbiting fairly close binaries,
with aB < 0.6 au.2 Hence, although the number of stable systems
is small (0.4 per cent), we find the possibility that systems may sur-
vive the entire pre-CE lifetime. We pursue this further in the next
section.

3.1 Variation of planet parameters

To explore the 2:1 solution in more depth, we now consider one of
the binary systems that showed promise of long-term stability in the
previous section. This binary initially had MA = 2.0 M", P = 110 d
and aB = 0.57 au. We ran a grid of simulations varying the planets’
semi-major axes from their nominal values out to a 3σ increase,3

with 25 semi-major axis values for each planet and 10 systems with
random initial angles for each combination of semi-major axes: a
total of 6250 systems. These were integrated until they suffered a
collision, close encounter or ejection, up to a maximum time of
1.164 Gyr, at which the primary leaves the MS.

The vast majority of these systems are unstable on very short time-
scales. The maximum lifetime of the 10 systems at each grid point
is shown in Fig. 3. In all, only 16 systems, 0.26 per cent, survived
until the end of the MS. Long-lived systems, and particularly those
that survive the whole MS, are concentrated with ad between 1.08

2 While in this grid all the stable systems satisfied the Holman & Wiegert
(1999) criterion, we did find instances (e.g. when increasing both planets’
semi-major axes by 3σ ) where the stable systems’ inner planets orbited
inside the stability boundary from Holman & Wiegert (1999). The boundary
estimate fails by a few per cent, within the errors quoted in Holman &
Wiegert (1999).
3 We did not consider reducing the planets’ semi-major axes as compressing
the system will likely make it yet more unstable.

  1.18e+00   9.07e+00
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2Pd=5PB
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Figure 3. Stability map for the reconstructed NN Ser system. The semi-
major axes of inner and outer planets are varied. The nominal values are
those at the bottom-left corner of the plot, while the axes extend to the
nominal value plus 3σ . Colour scale shows the maximum lifetime (in years,
log scale) of systems at each combination of axes. Some important mean
motion resonances are marked in red.

and 1.12 au and ac beyond 1.80 au. A second region of moderate
stability, with two survivors, lies with ad < 1.06 au. Nevertheless,
the low number of survivors, and the fact that these are found in
a region of parameter space far from the nominal values, suggests
that the evolution of the present NN Ser planetary system from a
more compact configuration is rather unlikely.

We also ran a second grid, fixing the planets’ semi-major axes at
their nominal values but reducing the masses by up to 3σ , again on
a 25 × 25 grid with 10 realizations per point. We note that the new
lower mass for the inner planet (Beuermann et al. 2013) is covered
by this grid. None of these systems lasted longer than 1500 yr. The
dominant effect of the binary, together with the relative insensitiv-
ity of analytical stability criteria to small changes in mass, means
that the planets’ semi-major axes exert the dominant influence on
stability.

We performed the same analysis for the 5:2 solutions, finding
them even more unstable: only 7 of 6250 systems survived for the
primary’s MS lifetime when allowing ac and ad to vary, and the
longest lived system had a lifetime of only 500 yr when allowing
mc and md to vary.

4 OT H E R E VO L U T I O NA RY PAT H S
FO R TH E NN SER SYSTEM

The results of the stability analysis presented above suggest that
a very small fraction of potential progenitor systems for NN Ser
could have survived to the end of the primary’s MS lifetime,
and that these require orbital elements that are rather removed
from their nominal values. While the evolution of the present-day
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We evolve 76 545 binary systems changing M1, Z, binary 
separation, ejection efficiency x binding energy.  

369 ok but CE par. between 0.5 to 2.0.  
             3690 separate integrations only 16 survive 10 Myr
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